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ABSTRACT OF DISSERTATION

Towards Intelligent Telerobotics: Visualization and Control of Remote Robot

Human-machine cooperative or co-robotics has been recognized as the next generation
of robotics. In contrast to current systems that use limited-reasoning strategies or address
problems in narrow contexts, new co-robot systems will be characterized by their flexibil-
ity, resourcefulness, varied modeling or reasoning approaches, and use of real-world data
in real time, demonstrating a level of intelligence and adaptability seen in humans and
animals. The research I focused is in the two sub-field of co-robotics: teleoperation and
telepresence.

We firstly explore the ways of teleoperation using mixed reality techniques. I proposed
a new type of display: hybrid-reality display (HRD) system, which utilizes commodity
projection device to project captured video frame onto 3D replica of the actual target sur-
face. It provides a direct alignment between the frame of reference for the human subject
and that of the displayed image. The advantage of this approach lies in the fact that no
wearing device needed for the users, providing minimal intrusiveness and accommodating
users eyes during focusing. The field-of-view is also significantly increased. From a user-
centered design standpoint, the HRD is motivated by teleoperation accidents, incidents, and
user research in military reconnaissance etc. Teleoperation in these environments is com-
promised by the Keyhole Effect, which results from the limited field of view of reference.
The technique contribution of the proposed HRD system is the multi-system calibration
which mainly involves motion sensor, projector, cameras and robotic arm. Due to the pur-
pose of the system, the accuracy of calibration should also be restricted within millimeter
level. The followed up research of HRD is focused on high accuracy 3D reconstruction
of the replica via commodity devices for better alignment of video frame. Conventional
3D scanner lacks either depth resolution or be very expensive. We proposed a structured
light scanning based 3D sensing system with accuracy within 1 millimeter while robust to
global illumination and surface reflection. Extensive user study prove the performance of
our proposed algorithm. In order to compensate the unsynchronization between the local
station and remote station due to latency introduced during data sensing and communica-
tion, 1-step-ahead predictive control algorithm is presented. The latency between human
control and robot movement can be formulated as a linear equation group with a smooth
coefficient ranging from 0 to 1. This predictive control algorithm can be further formulated
by optimizing a cost function.
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We then explore the aspect of telepresence. Many hardware designs have been devel-
oped to allow a camera to be placed optically directly behind the screen. The purpose of
such setups is to enable two-way video teleconferencing that maintains eye-contact. How-
ever, the image from the see-through camera usually exhibits a number of imaging artifacts
such as low signal to noise ratio, incorrect color balance, and lost of details. Thus we de-
velop a novel image enhancement framework that utilizes an auxiliary color+depth camera
that is mounted on the side of the screen. By fusing the information from both cameras,
we are able to significantly improve the quality of the see-through image. Experimental
results have demonstrated that our fusion method compares favorably against traditional
image enhancement/warping methods that uses only a single image.

KEYWORDS: Telerobotics, 3D Reconstruction, Multi-ystem calibration, Predictive Con-
trol, Robotic arm control
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Chapter 1 Introduction

1.1 Motivation and Goals

Human-machine cooperative, or co-robotics (Fig. 1.1 [3]) has been recognized as the next

generation of robotics. In contrast to current systems that use limited-reasoning strate-

gies or address problems in narrow contexts, new co-robot systems will be characterized

by their flexibility, resourcefulness, varied modeling or reasoning approaches, and use of

real-world data in real time, demonstrating a level of intelligence and adaptability seen in

humans and animals. Research on relevant aspects of human cognition, perception, and

action has the potential to be especially useful in this regard. This type of research may

enhance the design of robotic systems by mimicking human learning, reasoning and action

planning. This approach may also be helpful for designing co-robotic systems that will

be able to fruitfully collaborate with humans. Thus, the research program is necessarily

cross-disciplinary engaging basic research in the behavioral and social sciences, education,

as well as computer science and engineering.

Figure 1.1: The concept of co-robotics.

1
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Based on the promising outcome and expectation, national robotics initiative (NRI)

is organized to support the relative research on co-robot systems. Multiple federal gov-

ernment including the National Science Foundation (NSF), NASA, NIH and USDA are

participating in funding these researches.

We envision a new human-machine interactive paradigm that can transfer human intel-

ligence to robots. An existing dumb robot will be augmented with sensors to observe the

work piece, as well as its surroundings. These sensors are able to record and reconstruct

the process in 3D, which includes the working environment, the pose of the torch, etc. The

reconstructed data are transmitted to a control room and visualized with novel augmented

reality techniques: A skilled controller can look at the process from different angles, as if

he/she was right next to the actual work piece. Parameters can be adjusted by the human

(with intelligence) and executed by the robot (with precision).

The objective of this proposal is to study novel ways of telerobotics by using mixed

reality techniques. This effort can be fullfilled by establishing the software/hardware and

robotic control algorithms foundation to allow a robot to combine its accurate motion con-

trol and physical strengths with the intelligence of a human controller through real-time

human robot cooperation. Toward this goal of intelligent welding robots with autonomy,

I propose an innovative robotic control platform that is capable of monitoring and control

the remote robot activity using 3D imaging techniques and visualize the welding process

remotely using augmented reality techniques, which is inspired by Takeo Kanada, who

coined the term Virtualized Reality [4]. A traditional robot is augmented with a number of

sensor s to acquire all the relevant information during movement, including torch position,

work piece geometry, etc. These parameters are transferred to a visualization workstation

to re-enact the process. The workstation uses an articulated arm with a video projector,

which is referred to as the torch surrogated, to simulate the movement of the torch and the

visual changes under it. Note that the projection surface, constructed from template pieces,

is a proxy for the actual welding pieces. Furthermore, the surrogate can also be used as an

2
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input device to control the position of the robot.

One application of our proposed algorithm with significant social impact is tele-operational

welding, which is a widely used in manufacturing process that is labor intensive and some-

time hazardous. While industrial welding robots have been in use for several decades, they

are pre-programmed actuators with limited, if any, intelligence. As a result welding robots

are primarily used in well-controlled environments, such as assembly lines for mass pro-

duction, in which the work pieces may be accurately prepared and positioned at reasonable

costs. Given that manufacturing is moving towards more customized productions, the next

generation of welding robots that can intelligently adjust to various welding tasks is ur-

gently needed. Unfortunately, equipping robots with intelligence is challenging. Current

welding robots are basically articulated arms with a pre-programmed set of movement.

Although some robots are equipped with seam tracking capabilities, they all lack the intel-

ligence skilled human welders possess and their adaptation to different welding conditions

is limited. They require precision prepared work pieces with little variation in geometry

and material properties. Therefore their applications are mostly limited to assembly lines

for mass-produced products, such as automobiles. They are thus unable to produce a con-

sistent weld bead in these situations. Rather than explicitly modeling the physical welding

process in a parametric way, a data-driven approach that analyzes a rich set of welding pro-

cess data will be an effective way to mimic the human intelligence in reaction to various

welding tasks. In order to collect and utilize the human intelligence of professional weld-

ing experience, and in the meanwhile, enable direct human-robot interaction for better user

experience, developing a virtual welding platform which integrates data collection, virtual

reality and human-machine interaction is therefore necessity of that demanded.

The proposed Virtualized Teleoperation can be operated at three different levels: (1)

Remote-controlling (teleportation). Similar to the well-known da Vinci surgical robot, now

a welder can remotely operate the torch by controlling the surrogate in the visualization

station, with the benefit of looking at the process from different viewpoints, as if the welder
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is right in front of the work piece. This would enable working in hazardous areas for human

operators. (2) Co-operative (supervisory control). The human welder is mostly monitoring

the progress of the welding process carried out by the pre-programmed welding robot. The

welder can occasionally make adjustment by taking control of the surrogate. Different from

teleportation, the adjustment is usually small and occasional. In this way, the precision of

the welding robot and be combined with the intelligence of an experienced welder. (3)

Autonomous. The robot is running in a fully automatic way under close-loop control. The

control decision is based on the sensor input, such as 3D geometry of the weld pool and

the work piece. This type of adaptive control is fundamentally more advanced than the

current welding robots. At all three-levels (Fig. 1.2), a critical distinction of the proposed

virtualized welding is the 3D reconstruction of the welding environment and recording of

all welding parameters. This offers the opportunities for our robot to initially learn from

human welders, and then eventually achieve full autonomy with capabilities exceeding

experienced welders.

Figure 1.2: Model of operations and the associated research challenges.
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1.2 A brief note on the research

Telerobotics is the area of robotics concerned with the control of semi-autonomous robots

from a distance, chiefly using Wireless network (like Wi-Fi, Bluetooth, the Deep Space

Network, and similar) or tethered connections It is a combination of two major subfields,

teleoperation and telepresence. Teleoperation indicates operation of a machine at a dis-

tance. It is similar in meaning to the phrase ”remote control” but is usually encountered

in research, academic and technical environments. It is most commonly associated with

robotics and mobile robots but can be applied to a whole range of circumstances in which

a device or machine is operated by a person from a distance.

Teleoperation is standard term in use both in research and technical communities and

is by far the most standard term for referring to operation at a distance. This is opposed

to ”telepresence” that is a less standard term and might refer to a whole range of existence

or interaction that include a remote connotation. A telemanipulator (or teleoperator) is a

device that is controlled remotely by a human operator. If such a device has the ability to

perform autonomous work, it is called a telerobot. If the device is completely autonomous,

it is called a robot.

In simple cases the controlling operator’s command actions correspond directly to ac-

tions in the device controlled, as for example in a radio controlled model aircraft or a

tethered deep submergence vehicle. Where communications delays make direct control

impractical (such as a remote planetary rover), or it is desired to reduce operator workload

(as in a remotely controlled spy or attack aircraft), the device will not be controlled directly,

instead being commanded to follow a specified path. At increasing levels of sophistication

the device may operate somewhat independently in matters such as obstacle avoidance,

also commonly employed in planetary rovers.

Devices designed to allow the operator to control a robot at a distance is sometimes

called telecheric robotics.

Two major components of Telerobotics and Telepresence are the visual and control
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applications. A remote camera provides a visual representation of the view from the robot.

Placing the robotic camera in a perspective that allows intuitive control is a recent technique

that although based in Science Fiction (Robert A. Heinlein’s Waldo 1942) has not been

fruitful as the speed, resolution and bandwidth have only recently been adequate to the

task of being able to control the robot camera in a meaningful way. Using a head mounted

display, the control of the camera can be facilitated by tracking the head as shown in the

figure below.

This only works if the user feels comfortable with the latency of the system, the lag in

the response to movements, and the visual representation. Any issues such as, inadequate

resolution, latency of the video image, lag in the mechanical and computer processing of

the movement and response, and optical distortion due to camera lens and head mounted

display lenses, can cause the user ’simulator sickness’ that is exacerbated by the lack of

vestibular stimulation with visual representation of motion.

Mismatch between the users motions such as registration errors, lag in movement re-

sponse due to overfiltering, inadequate resolution for small movements, and slow speed

can contribute to these problems.

The same technology can control the robot, but then the eyehand coordination issues

become even more pervasive through the system, and user tension or frustration can make

the system difficult to use.

The tendency to build robots has been to minimize the degrees of freedom because that

reduces the control problems. Recent improvements in computers has shifted the emphasis

to more degrees of freedom, allowing robotic devices that seem more intelligent and more

human in their motions. This also allows more direct teleoperation as the user can control

the robot with their own motions.

A telerobotic interface can be as simple as a common MMK (monitor-mouse-keyboard)

interface. While this is not immersive, it is inexpensive. Telerobotics driven by internet

connections are often of this type. A valuable modification to MMK is a joystick, which
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provides a more intuitive navigation scheme for planar robot movement.

Dedicated telepresence setups utilize a head mounted display with either single or

dual eye display, and an ergonomically matched interface with joystick and related but-

ton, slider, trigger controls.

Future interfaces will merge fully immersive virtual reality interfaces and port real-

time video instead of computer-generated images. Another example would be to use an

omnidirectional treadmill with an immersive display system so that the robot is driven by

the person walking or running. Additional modifications may include merged data displays

such as Infrared thermal imaging, real-time threat assessment, or device schematics.

The prevalence of high quality video conferencing using mobile devices, tablets and

portable computers has enabled a drastic growth in Telepresence Robots to help give a

better sense of remote physical presence for communication and collaboration in the office,

home, school, etc. when one cannot be there in person. The robot avatar can move or look

around at the command of the remote person.

For over 20 years, telepresence robots, also sometimes referred to as remote-presence

devices have been a vision of the tech industry. Until recently, engineers did not have the

processors, the miniature microphones, cameras and sensors, or the cheap, fast broadband

necessary to support them. But in the last five years, a number of companies have been

introducing functional devices. As the value of skilled labor rises, these companies are

beginning to see a way to eliminate the barrier of geography between offices. Traditional

videoconferencing systems and telepresence rooms generally offer Pan / Tilt / Zoom cam-

eras with far end control. The ability for the remote user to turn the devices head and

look around naturally during a meeting is often seen as the strongest feature of a telepres-

ence robot. For this reason, the developers have emerged in the new category of desktop

telepresence robots that concentrate on this strongest feature to create a much lower cost

robot. The Desktop Telepresence Robots, also called Head and Neck Robots allow users to

look around during a meeting and are small enough to be carried from location to location,
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eliminating the need for remote navigation.

1.3 Innovation

In this dissertation, we propose the algorithms and frameworks for the improvement of

performance of telerobotics. These algorithm enhance the overall performance from the

aspects of teleoperation and telepresence.

The first framework which related to teleoperation is based on our novel hybrid-reality

display (HRD) assisted teleoperational welding system, which we refer to as virtualized

welding. It will allow a controller to monitor and remote control welding process with

proper 3D and spatial cues in real time. On the visualization aspect, it contains a hybrid

reality display (HRD) system, which utilizes projectors to project a captured video image

onto a 3D replica of the actual weld surface. It provides a direct alignment between the

frame of reference for the operator and that of the displayed image. The algorithm pre-

sented focuses on how to robustly calibrate multi-sensor in the framework, enable a fully

immersed operation environment. On the human-robot interaction aspect, the latency of

communication and transmission introduces unreality of remote scene. The algorithm pro-

posed utilize the concept of predictive control and is capable of minimize the incoherence

between remote video feedback and visualization on display device.

The second framework related to the domain of telepresence. We present a novel image

enhancement framework to significantly improve the image quality captured by a camera

from a see-through screen. Rather than performing traditional image enhancement, which

are often under constrained, we employ an additional color+depth camera mounted on the

side of the screen to make the problem better constrained. A novel sensor fusion algorithm

is developed to allow the recovery of a low-noise, high-fidelity image with correct color

reproduction and enhanced details.
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1.4 Dissertation Outline

The reminder of this dissertation is structured as follows. Chapter 2 provides discussion

of existing works mainly on these categories: structured light scanning technique, display

techniques in augmented reality, research progress in robot vision, techniques in recon-

struction of specular highlight surface and discussion on telepresence. Our approach on

multi-sensor calibration in visualization and monitoring on proposed novel hybrid reality

display(HRD) is detailed in Chapter 3. Since it is the first time the pipeline of hybrid

reality display assist teleoperation on welding has ever been proposed, we first introduce

the concept and setup. The algorithm that calibrate and combine all essential element in

the system is then presented. The performance is quantitatively evaluated base on exten-

sive user study. In Chapter 4, we move to the improved version of the pipeline discussed

in Chapter 3 by adding human factors via remote control. Due to this extra element in

the system, multiple delay may be introduced into the teleoperation system. We proposed

an algorithm based on predictive control to compensate the in-synchronization issue. In

Chapter 5, we address our effort on improve the performance of telepresence. Chapter 6

concludes with outlook of several future research possibilities.

Copyright c© Bo Fu, 2015.
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Chapter 2 Background and Related Work

2.1 Structured Light 3D Scanning

3D scanning using structured light is one of the oldest computer vision techniques. Since

the first paper [5–7] , a lot of progress has been made in terms of reconstruction speed,

accuracy and resolution. Broadly, these techniques are divided into discrete [8] and contin-

uous [9] coding schemes. For an exhaustive survey on structured light techniques, reader

is referred to the survey by Salvi et al [10]. In addition, hybrid techniques that com-

bine structured light with photometric stereo based techniques have been proposed as well

[11, 12].

The seminal work of Nayar et al. [13] presented an iterative approach for reconstruct-

ing shape of Lambertian objects in the presence of interreflections. Liu et al. [14] proposed

a method to estimate the geometry of a Lambertian scene by using the second bounce light

transport matrix. Gupta et al. [15] presented methods for recovering depths using projector

defocus [16] under indirect illumination effects. Chandraker et al. [17] use interreflections

to resolve the basrelief ambiguity inherent in shape-from-shading techniques. Holroyd et

al. [18] proposed an active multiview stereo technique where high-frequency illumination

is used as scene texture that is invariant to indirect illumination. Park et al. [19, 20] move

the camera or the scene to mitigate the errors due to indirect illumination in a structured

light setup. Hermans et al. [21] use a moving projector in a variant of structured light

triangulation. The depth measure used in this technique (frequency of the intensity profile

at each pixel) is invariant to indirect illumination. In this paper, our focus is on designing

structured light systems that are applicable for a wide range of scenes, and which require a

single camera and a projector, without any moving parts. Nayar et al. showed that the direct

and indirect components of scene radiance could be efficiently separated [22] using high-

frequency illumination patterns. This has led to several attempts to perform structured light
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scanning under indirect illumination [23–25]. All these techniques rely on subtracting or

reducing the indirect component and apply conventional approaches on the residual direct

component.While these approaches have shown promise, there are three issues that prevent

them from being applicable broadly: (a) the di- rect component estimation may fail due to

strong interreflections (as with shiny metallic parts), (b) the residual direct component may

be too low and noisy (as with translucent surfaces, milk and murky water), and (c) they

require significantly higher number of images than traditional approaches, or rely on weak

cues like polarization. Recently, Couture et al. [26] proposed using band-pass unstructured

patterns to handle interreflections. Their approach involves capturing a large number (200)

of images with random high-frequency patterns projected on the scene. In contrast, [27]

explicitly design ensembles of illumination patterns that are resilient to a broader range of

indirect illumination effects (interreflections, subsurface scattering, defocus, diffusion, and

combinations of multiple effects), while using significantly fewer images.

Active illumination has also been used to measure density distribution of volumetric

media [28, 29] and reconstruct transparent objects [30, 31]. For a detailed survey on

techniques for reconstructing transparent and specular surfaces, please refer to the state of

the art report by Ihrke et al. [32]. There have also been techniques for performing 3D

scanning in the presence of volumetric media using light striping [33,34]. Our techniques

can not handle volumetric scattering. The focus of this work is on reconstructing opaque

and translucent surfaces with complex shapes.

Fig. 2.1 [10] shows a classification of the existing pattern projection techniques.The

main distinction has been done regarding the discrete or continuous nature of the pattern,

rather than the codification process. Discrete patterns present a digital profile having the

same value for the region represented by the same code word. The size of this region largely

determines the density of the reconstructed object. Besides, continuous patterns present a

smooth profile where every pixel has a unique code word within the non-periodicity region,

assuring dense reconstruction. A posterior sub-classification is done regarding spatial, time
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and frequency multiplexing. Columns on the right indicate the value of some intrinsic

attributes common to all the patterns.

Figure 2.1: The classification of existing structured light techniques.

These attributes are: 1) Number of projected patterns: determines whether the method

is valid or not for measuring moving objects. 2) Number of cameras: the method uses
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stereo-vision(two or more cameras)coupled to an on-calibrated pattern used only to get

texture on the surface pattern,or an unique camera coupled to a calibrated projector. 3)

Axis codification: the pattern is coded along one or two axis. 4) Pixel depth: refers to the

color and luminance level of the projected pattern(B,G and C stands for binary, gray scale

and color, respectively). 5) Coding strategy: refers to the periodicity of the set of patterns

projected on the surface(A stands for absolute and P stands for periodic). 6) Sub-pixel

accuracy: determines whether the features are found considering sub-pixel precision,thus

providing better reconstruction results (yes or no). 7) Color: determines whether the tech-

nique can cope with colored objects (yes or no).

The visible light based structured light scanning technique, however put up with a major

disadvantage: the light pattern projection forms an invasive signal that can be objectionable

in some cases. It yields to the loss or corruption of colorimetrical and textural information

of the lighted surfaces, to the inconsistence of the optical flow and, moreover, to the offen-

sive, indeed dangerous aspect of the illumination (think about potential danger of LASER

sources, faces measurements even with slide light projector, etc.) In addition, some in-

spection systems, working in outdoor or partial outdoor environment, have to be discreet

and without risks. Among these, systems of sensitive zone surveillance, systems of colli-

sion detection on some vehicles, systems of environment recognition used in robotics and

many others can be mentioned. These systems have to acquire geometric measurements on

objects that cross their detection field, without disrupting, modifying, or putting in danger

the environment. In order to benefit from the advantages of structured light vision while

avoiding these drawbacks, we laid down the objective to design a sensor with light pattern

projection in the nonvisible spectrum. With this aim, several options occur, each one based

on a different type of light: InfraRed Structured Light (IRSL), Imperceptible Structured

Light (ISL) and Filtered Structured Light (FSL).

For Infrared Structured Light scanning, An infrared laser beam is used to generate

invisible patterns that can be single dot, single line or bi-dimensional patterns. The light is
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usually projected in the near-infrared, i.e. from 640nm to 2500nm or from 4000 to 15600

cm-1. The scene is observed by a CCD camera, because of the spectral sensibility of CCD,

from 300nm to 1100nm (an infrared camera is not necessary). This technique is widely

used for 3D scanning, robot navigation and so on. Boverie, Devy and Lerasle recently used

infrared structured light for 3D perception applied to airbag generation [35]. They also

compared structured light and stereovision [36]: they concluded that stereoscopy gives

very high reliability but remains heavy in terms of computational time, whereas structured

light proposes a good compromise between accuracy and speed. They also recall one of the

most interesting characteristic of structured light: its capability to retrieve 3D information

from a non-textured surface. Infrared structured light has also been used in omnidirectional

vision [37]. A rotative sensor composed of two CCD cameras and a diffracted laser beam

observed the scene along 360. By filtering the images, this sensor is used for the 3D

reconstruction thanks to structured light and color acquisition thanks to RGB information.

A Cold filter is used to grab infrared structured light image.

For imperceptible structured light , sensors are composed by a unique light source and

two cameras. The light source projects a light pattern followed by its complement (inverse

pattern) onto the scene at high frequency, so that the resulting pattern is uniform. The first

camera is synchronized with the projection of the first pattern and permits to reconstruct the

scene thanks to the capabilities of structured light vision; the second camera has a longer

integration time and observes the scene under uniform light (as a result of pattern and

complement projection) which permits to get a classical gray-level or colored image and

processes it. This technique is known as imperceptible structured light [38,39]. The aim is

to combine the advantages of structured lighting (easy correspondence and reconstruction

of homogeneous surfaces) with the advantages of classical vision (color or texture analysis,

etc.) in order to achieve a 3D reconstruction of the scene with the mapping of surface colors

and textures.

Whether the frequency of projection reaches the critical Ilicker Irequency (from 75Hz

14



www.manaraa.com

Table 2.1: Equipment requirement comparison between 3 invisible structured light scan-
ning techniques

Light Source Camera Additional Requirement

IRSL
Only one light source is

needed: laser beam,
diffracted laser beam.

One CCD camera or,
eventually, one infrared

camera.
None

ISL One video-projector is needed. Two CCD cameras are needed. None

FSL
Only one light source is

needed: laser beam,
diffracted laser beam or video-projector.

One CCD camera or,
eventually, one infrared

camera.
One IR filter.

according to Watson [40]), the pattern and the inverse pattern are visually integrated over

time, so that the result is the appearance of flat field (”white” light). Critical flicker fre-

quency is defined as the highest frequency at which a person can detect the flicker in a

flickering light source.

For filtered structured light , The light source is filtered so that only infrared structured

light passes. The light pattern can be projected through a laser source or a video-projector.

An IR filter, set in front of the light source, permits to ”cancel” light below 750nm, 800nm,

850nm, etc. by acting as an high-pass filter.

Based on the required equipment, the 3 invisible structured light scanning techniques

can be compared in (Table. 2.1 [41]).

2.2 Visual Display Technique

Mixed reality [42, 43] have been recognized for welder training [44] and adapted in the

test generation of training equipment. Some sophisticated systems for training with HMD

have been available recently, such as ARC+ [45], the Fronius Virtual Welding system

[46], VRTEX 360 [47], and EWI AdvanceTrainerTM [48]. These systems do not employ

see-through method, instead, they apply fully simulated environment on the display, thus

are categorized into virtual reality. Among these methods, VRTEX 360 is probably one

of the most sophisticated. It is co-developed by a company specializing in visual training

and simulation. A mock-up welding torch is equipped with sensors so that it can be fully
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tracked. A welders helmet is fitted with a head mounted display to provide simulated

images. A graphics simulation program is developed to simulate the welding process,

including the sparks and the weld pool. It is not clear how the simulation is achieved. As

a training tool, the images shown to the trainee are entirely simulated. While this may be

adequate for the purpose of training, it is unlikely to be able to simulate the complexity

and possible variations in a real welding environment. Another drawback is that the focus

distance is fixed in most display types, resulting poor eye accommodation. Therefore we

choose to use augmented reality (AR) techniques for the visualization aspect of virtualized

welding. AR allows a user to see the real world, with virtual objects superimposed upon or

composited with the real world [49]. AR has been used in many application areas, such as

education, health care, the military, and entertainment. However, its application to welding

has not been reported.

Display techniques of AR [50, 51] can be divided into three categories: head-mounted

displays, projection-based displays and handheld displays.

HMD provides user a virtualized or partially virtualized immersive environment by

combining reality information and virtual information. A see-through HMD can thereafter

help the user to see more information than just the reality by superimposing virtual objects

in the reality. Differenced by the mean of visual presence, it can be divided into three

categories: optical see-through [52], video see-through and head-mounted projective dis-

plays. Tightly related to virtual reality is video see-through, where the virtual environment

is replaced by video of reality and images are overlaid by the AR. In [53], an AR system

integrated in welding helmet is presented. The scene is acquired by a stereoscopic high

dynamic ranged CMOS camera that enabling simultaneous observation of the welding arc

and environment. Then the scene is displayed on a video see-through HMD. Disadvantages

of these methods include a low resolution of reality, a limited field-of-view and user disori-

entation due to a parallax caused by the cameras positioning at a distance from the viewers

true eye location, resulting significant adjustment effort. In [54], however, a video see-
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through HMD was built with zero eye offset from commercial components and a mount

fabricated via rapid prototyping, but this method still suffers from other drawbacks other

than the parallax issue.

Another method is optical see-through which abandons the real world perception but

only displays the AR overlay by means of transparent mirrors and lenses. A popular prod-

uct that falls into this category is Google glass. In [52] an autostereoscopic optical see-

through system for AR is presented. It uses a transparent holographic optical element

(HOE) to separate the views produced by two, or more, digital projectors. It is a minimally

intrusive AR system that does not require the user to wear special glasses or other equip-

ment. The main challenge is the generation of correct occlusion effects between virtual

and real objects. [55] solves this problem by proposing a display which is capable of mu-

tual occlusions. Advantages of optical see-through method are that they are cheaper and

parallax-free. The major limitation that makes optical see-through inapplicable to weld-

ing application is other input devices such as cameras are required for registration. Also,

by combining the virtual objects holographically through transparent mirrors, the bright-

ness and contrast of both the images and reality perception will be reduced, making this

method less suitable for environment with spectral high light caused by the electric arc

during welding.

As an alternative to HMD, head-mounted projective displays [56] use a pair of portable

projectors mounted on the headset that project images onto retro-reflective material which

is then reflected back into users eye. Advantage of this method is that it supports a large

field of view and is able to display on curved surface. The limitation is that the user must

be precisely tracked to provide a stable and convincing image.

Different from head-mounted projective displays, projection-based displays project AR

overlay onto real objects to result in a projective display. In [57], a method named Shader

Lamp is proposed. The idea is to use projectors to graphically animate physical objects

in the real world. This method is a good option for applications that do not require users

17



www.manaraa.com

to wear anything, providing minimal intrusiveness and accommodating users eyes during

focusing. They can cover large surfaces for a whole field of view. Projection surface can

varying from flat to complex models. We therefore utilize this method for visualization

aspect of our system.

Generally, the advantages and disadvantages of these techniques is presented in Fig.

2.2 [58].

Figure 2.2: The characteristics of display techniques.

2.3 Hand-eye calibration for Robotic Vision

There is a strong need for an accurate hand-eye calibration (Fig. 2.3 [59]). The reasons

are twofold: i) to map sensor-centered measurements into the robot/world frame and ii) to

allow for an accurate prediction of the pose of the sensor on the basis of the arm motion in

fact these are often complementary aspects of the same problem.

When performing hand-eye calibration on the basis of both the pose of tool with respect

to the robot base frame, and pose of camera with respect to the world frame, there are two

main approaches in order to estimate the hand-eye transformation:

1) Move the hand and observe/perceive the movement of the eye.
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Figure 2.3: The Concept of hand-eye calibration.

This is the classical approach. Early solutions regard the rotational part of this equation

decoupled from the translational one, yielding uncomplex, fast, but error-prone formula-

tions, since rotation estimation errors propagate to the translational part. Seminal articles

are Shiu and Ahmad 1989 [60] (least squares fitting of rotation, then translation, using

angle-axis representation) and Tsai and Lenz 1989 [61] (similar to [60] with closedform

solution). Zhuang and Roth 1991 [62] simplified the formulation introducing quaternions

for the estimation of the rotational part, in the same way as Chou and Kamel 1991 [63],

who make use of the singular value decomposition (SVD). Chen 1991 [64] for the first

time does not decouple rotational and translational terms by using the screw theory. Wang

1992 in [65] compares [60] and [61] resulting in a slight advantage for the latter. Zhuang

and Shiu 1993 [66] apply nonlinear optimization for both parts, minimizing a similar

expression to Frobenius norms of homogeneous matrices of transformation errors. They

additionally offer the possibility to disregard the camera orientation for the estimation. A

similar approach was presented by Fassi and Legnani 2005 [67]. Park and Martin 1994

[68] perform nonlinear optimization in the same way, but again in the detached formula-

tion. Lu and Chou 1995 [69] introduce the eight-space formulation based on quaternions,
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linearly optimizing both parts at the same time using the SVD. Horaud and Dornaika 1995

[70] nonlinearly optimize both the rotational (formulated with quaternions) and the trans-

lational parts one-to-one. Wei, Arbter, and Hirzinger 1998 [71] nonlinearly minimize

algebraic distances performing simultaneous hand-eye and camera calibration. Daniilidis

1999 [72] introduces the dual quaternions an algebraic representation of the screw theory

to describe motions. This enables the author to find a fast SVD-based joint solution for

rotation and translation within linear formulation. Bayro-Corrochano et al. 2000 [73] in

the same way produce a SVD-based linear solution of the coupled problem by the use of

motors within the geometric algebra framework. Andreff et al. 2001 [74] do the job prop-

erly, employing this particular formulation for X-from-motion applications. They get rid

of the nonlinear orthogonality constraint by increasing the dimensionality of the rotational

part and manage to formulate the problem as a single homogeneous linear system.

2) Simultaneous estimation of the hand-eye transformation and the pose of the robot in

the world.

To the best of our knowledge it was Wang in 1992 [65] who first submitted this for-

mulation explicitly for hand-eye calibration. Surprisingly, none of the further approaches

refer to him in this context. Zhuang et al. 1994 [75] apply quaternions in order to get

a simple linear solution of the rotational part by the use of the SVD. Remy et al. 1997

[76] nonlinearly optimize both parts by minimizing reprojected 3D Euclidean error dis-

tances in S0. Dornaika and Horaud 1998 [77] solve the rotational problem linearly with

quaternions and also nonlinearly optimize both parts by one-to-one minimizing of Frobe-

nius norms and two penalty functions. Other approaches integrate the hand-eye calibration

with the intrinsic camera calibration and minimize the Root Mean Square (RMS) of the im-

age frame errors. The optimization criteria for both approaches are often suboptimal and

no attention is paid to proper parametrizations. Since the purpose of model-based3 cali-

bration is the accurate parametrization of the system model, maximum accuracy optimal

calibration is achieved when minimizing model fitting errors with regard to the actually
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erroneous elements. Here we propose a metric on the group of rigid transformations SE(3)

for this purpose. Moreover, with the exception of [76], a thorough comparison of these

very different approaches is missing.

2.4 Human-Robot Interaction (HRI)

From a user-cantered design standpoint, our proposed display system is motivated by tele-

operation accidents, incidents, and user research in military reconnaissance [78], surgery

(e.g., [79]), urban search and rescue (e.g., [80]), and space exploration (e.g., [81]). Tele-

operation in these environments is compromised by the Keyhole Effect, limited depth cues,

and misalignments of robot, display, and human frames of reference. The Keyhole Effect

results from the limited field of view that is usually provided by robot-mounted cameras.

This keyhole view disrupts the operators normal attention control, limits situation aware-

ness, disrupts spatial comprehension, and makes object identification more difficult [82].

Luckily, for welding applications, welders are trained to work with a limited field of view,

and the area of interest is small. Frame of Reference problems occur when the operators

control axes are not spatially aligned with the axes of motion of the robot. Misalignment

requires the operator to mentally rotate and transform displayed axes, increasing cognitive

workload, response times, and control errors [83]. Finally, limitations of depth informa-

tion during teleoperation require the human operator to use less efficient control strategies

and results in greater mental workload (e.g., [79]).

2.5 Predictive Control and Robot Control

Robot control has been an active research area since early 1980s. Different control methods

have been proposed, ranging from passivity, compliance, predictive and adaptive control,

and variable structures [84]. Wave variables method, as a modification to the passivity the-

ory, is considered to be a robust approach to solve arbitrary time delay problem [85–87].

However, wave variables are not physically measurable and thus may not be as intuitive
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as velocity and force data. Garcia [88] proposed a hybrid control method for control-

ling a telerobotic system. It was designed to modify the references sent from the local

station to the remote station when force and position thresholds were overcome or when

communication was interrupted. Nonlinear adaptive control was also adopted by various

researchers [89–91]. The fuzzy control method and neuro-fuzzy technology have been

demonstrated to have advantages of robustness and ability to model and control complex

nonlinear systems [92, 93].

Predictive control of linear systems has received considerable attention in past decades

due to its robustness with respect to model uncertainty [94–96]. Recently nonlinear predic-

tive control method has been extensively studied to control the robot arm. Makarov [97]

presented a model-based predictive approach for trajectory tracking of an anthropomorphic

robot arm. Wang [98] proposed a multivariable predictive-repetitive controller. Closed-

loop performance of the proposed control system in terms of reference trajectory follow-

ing, disturbance rejection, and measurement noise attenuation was also demonstrated. In

this paper control of the robotic arm movement speed is formulated as a predictive control

problem, and an analytical solution is derived to control the robot speed in real-time.

2.6 Telepresence Enhancement

The issue of image or video denosing has been an active research topic for decades. Effec-

tive approaches include as non-local means [99], bilateral filters [100], etc. Unfortunately,

high-frequency details are usually lost after denosing, since it is impossible to distinguish

high-frequency contents with random noise in a single image.

The use of additional optical component can also alter the color balance of the captured

image. For example, the ConnectBoard system uses an wavelength dependent diffuser

to interleave the projected image and see-through image [101]. The color transfer of the

diffuser is approximated as a piece-wise linear affine transformation. Color transfer from

different images can also be achieved by looking at some image statistics (such as mean
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and image histogram) [102].

Recent imaging techniques combine two or more images in the gradient domain (e.g.,

[103–105]). These algorithm usually deal with a stack of images taken from the same

perspective, for which the pixel correspondences across images are accurate and given.
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Chapter 3 Visualization and Monitoring of Remote Welding

Historically, many technological systems that require skilled operator control eventually

transition to semi-automated or fully automated systems. This is certainly the case for

welding, where automated welding systems have existed for several decades. These auto-

mated systems reside primarily in manufacturing, where weld parameters may be tightly

controlled (e.g. weld types, work piece position, environmental conditions, etc.). Situa-

tions where variation occurs have required the skill of expert welders. Driven by increasing

demands in manufacturing to produce more customized products in small batches [106],

semi-automated processes for more complex welding tasks are likely to occur in the near

future. This will allow a welding robot to intelligently adapt to various welding tasks, while

requiring the expert welder to monitor progress in real time and make changes when neces-

sary. This transition from manual operation to monitoring, is likely to bring about a new set

of cognitive and physical task demands for the welder [107,108]. One of the best methods

to counter future workload issues may be through the use of efficient, user-centered design

of new displays [109].

In this chapter we present a new type of hybrid-reality display (HRD) system, which

we refer to as virtualized welding, that will allow a welder to monitor a remote welding

process with proper 3D and spatial cues in real time (Fig. 3.1). It is assembled out of read-

ily available sensing and visualization hardware. In particular, we present an augmented

display that utilized projectors to project a captured video image onto a 3D replica of the

actual weld surface. We have chosen this approach due to a wide range of human factors,

ergonomics, and usability research that has identified the limitations of traditional planar

displays for supporting navigation and teleoperation tasks [110]. User performance often

suffers because of misalignments between the frame of reference of the operator and that of

the displayed image, reductions in visual context, and limited depth cues. Skilled operators,
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Figure 3.1: Virtualized Welding: Above: an illustration of our virtualized welding opera-
tion, in which existing welding robots are augmented with a video cameras to capture the
working environment. The operator can monitor the welding process in an augmented dis-
play setup from differenct angles, in which welding images are projected on a mock-up 3D
surface, as if he/she was right next to the actual welding. Below: our current implementa-
tion of virtualized welding.

such as seasoned surgeons performing laparoscopic surgery, can often compensate for these

limitations, but doing so increases their cognitive load, perceived stress, and fatigue [111].

Thus, we argue that a fundamental goal of visual workstation design must focus not only

on immediate operator performance but also on the enhancement of cognitive metrics that

have implications for long-term operator well-being and proficiency.
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Some sophisticated systems for training with head-mounted displays(HMD) have been

available recently, such as ARC+ [45], the Fronius Virtual Welding system [46], VR-

TEX360 [47], and EWI AdvanceTrainerTM [48]. HMDs provide the user with a virtual-

ized or partially virtualized immersive environment by combining reality information and

virtual information. While improvements have been made since their inception, disadvan-

tages to HMDs include: field of view restrictions, low resolution, parallax issues, and user

disorientation. As such, these problems are still the focus of extensive study [112–115].

Our focus on both experiential and performance outcomes has led us to bypass some

current VR workstation options, such as HMDs, in favor of a workstation that makes use of

surrogate objects as projection surfaces. Projection-based displays project an AR overlay

onto real objects to result in a projective display. For example, in [57], a method named

ShaderLamp is proposed. The idea is to use projectors to graphically animate physical

objects in the real world. This method allows for applications that do not require users

to wear anything, thereby limiting intrusiveness, allowing natural eye focusing. In ad-

dition, the image may encompass large surfaces across a users whole field of view, and

the projection surfaces may vary from flat to complex models. To be clear, the goal of

our initial development and evaluation efforts are not to directly compete with alternative,

evolving VR display modalities, but rather to see if a surrogate-base projection workstation

can yield immediate improvements in user outcomes over those associated with the direct

video feeds of the weld pool provided by current robotic welding systems.

The current work presents in detail our system design and methods for calibration of

the system. Furthermore, a user performance study was conducted aimed at assessing any

possible performance and cognitive benefits of the current system, specifically in regards

to monitoring of the weld process in real-time. Results demonstrate the hybrid-reality sys-

tem yields immediate advantages in user performance and workload over more traditional

planar displays presenting the work piece with common camera viewpoints.
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3.1 System Platform

Our virtualized welding system (Fig. 3.1) consists of two workstations: real welding work-

station and virtual welding workstation. Illustrated in Fig. 3.2, The real welding worksta-

tion is responsible for completing the welding task on the work piece and acquiring visual

information of the work piece. It contains the robot control system and the visual infor-

mation acquisition system. The virtual welding workstation (Fig. 3.4), on the other hand,

focuses on visualizing the work piece. Data communication between the two workstation

is bridged by network.

Figure 3.2: General structure of the virtualized welding system.

Real Welding Workstation

Illustrated in Fig. 3.3, the weld gun and a video camera are rigidly mounted to the end

effector of a robotic arm. The camera, which is referred to as the local view camera,

observes the work piece while welding is in progress. The view angle of the camera is

adjusted to be similar to that of human welders, providing a more realistic visualization

experience when the visual information taken by the local view camera is rendered in

the virtual welding workstation. Another camera is mounted in a fixed location. This

camera, which is referred to as the global view camera, captures a wide view of the working
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environment. It provides more reference in the surrounding area. The videos captured by

the global view camera is mainly used for usability evaluation. The robotic arm follows

the command from the virtual welding workstation and drives the end effector in real time.

In addition, a 3D scanner based on structured light is used to scan the work pieces in high

resolution ( less than 1mm in depth accuracy).

Figure 3.3: Overview of real welding workstation. The global view camera is facing to-
wards the robotic arm and work piece.

Virtual Welding Workstation

A mockup of the work pieces is reconstructed in the virtual welding station. The mockup

can be assembled from identical work pieces, or in our case, 3D printed. A video projec-

tor is used to project imagery from the real-welding station onto the mockup. Since the

mockup and the actual work pieces have (almost) identical surface geometry, the resulting

HRD is autostereoscipic and provides the same spatial cue as in the real welding. In order

to achieve that, the projector must be calibrated with respect to the mockup. This requires

the use of an auxiliary camera to observe the projected images for calibration purpose. In

addition, the projector-camera pair can be used as a 3D scanner. We usually re-scan the

mockup to accommodate the errors introduced in 3D printing or assembly.
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Figure 3.4: Detailed view of the virtual welding workstation. Major components are a
mock up, an auxiliary camera and a projector. The mockup is generated by 3D printer.

3.2 Multi-sensor Calibration

Extensive calibrations between components of the proposed system are conducted before

the system performs the teleoperation and visualization task. Fig. 3.5 illustrates these cali-

brations in our system.

The calibration work concerns (a) the pose of the local-view camera at the end-effector

of robotic arms and (b) linking the coordinate frame on the real welding station with that

from the virtual welding station. Since we have geometrically identical objects in both sta-

tions, we use them as the common coordinate frame (e.g., S0). Then the task of calibration

is to find the intrinsic and extrinsic parameters of the cameras and projectors. More spe-

cially, for the local-view camera, hand-eye calibration consists of calculating the unknown

position (translation) and orientation (rotation) of camera frame SC w.r.t the robot end-

effector frame SH when the camera is mounted on the robotic arm rigidly. The other pair
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Figure 3.5: Calibration of the virtualized welding system. Projector, local view camera and
robotic arm are calibrated together.

of coordinate frames, SH and robot base frame SB are easily linked by forward kinematic.

Hand-Eye Calibration

Regarding (SC,SH) calibration, we can simultaneously estimate the hand-eye transforma-

tion and pose of the robot in the world: AX = ZB, where A is the homogeneous trans-

formation relating pose of SC to the pose of world frame S0 0T c, B is the homogeneous

transformation linking the pose of SH and the pose of robot base frame SB bT h, and X

and Z are the eye-hand and world-base transformation [59]. The estimation can be fur-

ther formulated to the predictive parametric model, which can directly reproduces the rigid

transformations in a loop way: camera−hand−base−world− camera:

0T c
cT h = 0T b

bT h ⇀↽

SC
cT h
−−→ ST

0T c ↑ ↗ ↑
bT h

S0
0T b

−−→ SB

(3.1)
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Since the transformation 0T b is not our concern in this specific case of hand-eye cali-

bration, we can further eliminate this term by replacing it with two different instants i and

j in Eq.3.1:

ciT
c j cT h = cT h

hiT
h j ⇀↽

0T c j cT h,(0T b)−−−−−→ bT h j

c j T
c j ↑ ↗ ↑

hiT
h j

0T ci cT h,(0T b)−−−−−→ bT hi

(3.2)

The equation can be further decomposed into rotation and translation:

 ciR
c j cRh = cRh

hiR
h j

ciR
c j cth + cit

c j = cRh
hit

h j + cth
(3.3)

with error metric [59]:

{tT c,bT 0}∗ = arg min
tT c,bT 0

(∑
n
i=1

(Orot
i )

2

∗σ2
rot

+
(Otra

i )
2

∗σ2
tra

) (3.4)

where ∗σ2
rot and ∗σ2

tra are the 2nd moments of the independent Gaussian probability density

function in rotation and translation error.

by solving Eq.3.3, we can calibrate frame SC and frame SH .

Projector-Mockup Calibration

In the virtualized working station, the visualization of real working environment is per-

formed via projector and the mockup onto which the rendered video frame will be pro-

jected. Without prior knowledge of the transformation between projector frame SP and

common frame S′0, it is necessary to discuss the calibration procedure.

In order to discover the 3D transformation between SP and S′0, it is naturally to adapt

the technique of structured light scanning since only an extra auxiliary camera is needed

to fulfill the SL’s requirment, and the accuracy can be as less than 1 mm. Other scanning
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method, such as Line scanning systems, e.g. laser scanners, are capable of acquiring accu-

rate depth data within 1 mm, but needs a relative long acquisition time, and extra effort is

required to further calibrate projector with existing mock up. Once we get the 3D geometry

of the mockup via the scanner, S′0 is automatically registered in SP. Another purpose of the

structured light scanner is, given a work piece, we need to get its 3D model to print out

the mockup for displaying via 3D printing technique. Given the complexity in geometry

and material of the work piece, that is, in practice, the work piece is not necessarily being

a plate or pipe, the presence of interreflections, subsurface scatting and defocus, as well as

unfavorable surface color, such as black, in these scenario, the performance of scanner will

be greatly affected. Here we adapt a multi-gray code pattern based visible/Near Infrared

structured light scanning with subpixel refinement.

The gray-code based structured light scanning, once the correspondence between pro-

jector’s coordinate system and camera’s coordinate system has been discovered, is all about

solving triangulation (illustrated in Fig. 3.6 [116]) between projector and camera coordi-

nates. The major technical difficulty comes from decoding the captured gray-code illumi-

nation sequence (Fig. 3.7 [117]). Fig. 3.8 illustrates a standard gray code based structured

light scan and the decoded reuslt. The challenges can be divided into the following cate-

gories: 1) non-ideal illumination 2) surface reflection 3) limited resolution.

The critical part of decoding primarily relies on high contrast gray-code pattern se-

quence. Under visible light condition, certain type of object, such as dark colored work

piece can not reflect gray code patterns with enough contrast ratio. Although varying paint-

ing material on the work piece provides different reflective behavior from visible or near

ifrared light (NIR) [118], the dark colored painting absorbs most of visible light spectrum

while being more reflective in NIR lighting condition. Base on this observation, we adapt

projector with both visible and NIR light source. Some experiment result can be referred

in section 5.3.

Another issue related to SL is interreflections, subsurface scatting and defocus over
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Figure 3.6: Triangulation via line-plane intersection between camera frame and projector
frame.

Figure 3.7: Gray Code structured light sequences. The image represents the sequence of bit
planes displayed during data acquisition. Image rows correspond to the bit planes encoding
the projector columns, assuming a projector resolution of 1024 by 768, ordered from most
to least significant bit (from top to bottom).

surface of work piece, as illustrated in Fig. 3.9 [27]. As the work piece in our application

are mainly made of metal with/without painting, the interreflections is inevitable under

illumination of structured light scanning. Thus we introduced four different types of Gray

Code, each corresponding to conquer certain type of the surface. Illustrated in Fig 3.10

[27].

The third issue is that with standard structured light decoding schemes one is limited

by the resolution of the projector. That is, while one can decode a corresponding projec-

tor pixel coordinate for every pixel in the image frame, the quantization of the projector

ultimately limits the accuracy of the reconstruction. We adapt a method [119] based on ex-

ploiting the blur induced by the optics of the projector to achieve subpixel resolution of the

recovered projector coordinates. By this mean, we can localize scene points more precisely
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Figure 3.8: Decode result based on gray code structured light scan. Left: gray code illumi-
nation sequence. Right: decoded result. Color represent coordinate in projector cooridnate
system.

Figure 3.9: Strong Interrefelction and sub-surface scattering result unfavourable errors in
the recontructed model.

in the projector frame and thus improve the accuracy of the resulting 3D reconstruction.

Eight single stripe patterns are introduced to assist the projector blur estimation, Fig. 3.11

shows one of the images where the object is being illuminated with one of the single pixel

thick stripe patterns.

The Eq. 3.5 models how the observed intensity of the pixel I(k)varies as the stripe is
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Figure 3.10: Visualization of different binary coding. Bottom two are logical XOR04 and
logical XOR02 code respectively.

marched across the scene.

I(k) = I1exp(
−(k−δ )2

σ
)+ I0 (3.5)

Where I1 = f (θ0,θi)E0 cosθi, f (θ0,θi) represent the BRDF at the scene point, I0 rep-

resent the scene irradiance due to ambient illumination, k denotes the stripe index from 0

to 7, δ is the projection of scene point in the projector frame, θ models the width of the
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Figure 3.11: a) Object illumiated by a single pixel stripe pattern. b) Close up image on the
marked region.

blur kernel at certain point in the scene. Converting Eq. 3.5 into the following equation:

log(I(k)− I0) = (logI1− (
δ 2

σ
))+(

2δ

σ
)k− (

1
σ
)k2 (3.6)

Eq. 3.6 demonstrates the relationship between the parameters of interest (δ ) and the co-

efficients of the local quadratic fit. We can thus recovers a floating point offset between -0.5

to 7.5 at each scene point which effectively corresponds to the lower bits of the projection

of the scene point in the projector frame.

Combining the three methods for different scenario of the work piece, we present

the following algorithm Alg. 2 in pseudo-code. The visualized pipeline is illustrated in

Fig. 3.12.

Tool-Hand Calibration

In order to enable the robotic arm sense the 3D environment, local view camera serves

as the observation device of the robotic arm, in section 3.2, we discussed the calibration

between the camera and the end effector. However, Tool (or any device) attached to the end-

effector of the robotic arm is its ultimate interactive subject with the working environment.
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Algorithm 1 High Resolution Structured Light Scanning in the presence of global illumi-
nation and varying colored painting

1: Project patterns and capture images for the 5 codes - two Gray codes ( Conventional
Gray GC and Gray codes with maximum min-SW GMM), the two logical codes
(XOR02 and XOR04), and the single pixel stripe pattern GS.

2: Compute the depth values under the GC and GMM using conventional decoding and
XOR02 and XOR04 using the logical decoding.

3: Compare the depth values. If any two codes agree, return that value as the correct
depth. If the two Gray codes GC and GMM agree, return the value computed by
GMM.

4: Compute the depth values under GS using subpixel refinement method and improve
the resolution of the result in step 3.

5: Mark the camera pixels where no two codes agree as error pixel.
6: Mask the pattern so that only the scene points corresponding to the error pixels are

lit [120]. Repeat steps 1-6 to progressively reduce the residual errors.

Figure 3.12: The pipeline of High Resolution Structured Light Scanning algorithm.

Thus, it is necessary to calibrate the frame of tool ST and frame of end-effector SH .

In real setup, geometric relationship between ST and SH is unknown due to non-standardized

mounting device of local view camera. A trivial method is provided by Microsoft Kinect

Fusion. However, due to limited GPU memory and depth sensor resolution [121], this

method is not suitable on our application which requires millimeter level of accuracy.

Based on the algorithm proposed in subsection 3.2, we therefore proposed a method which

combines the structured light scanning, iterative closet point(ICP) and principle component
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analysis (PCA) to discover the transformation between ST and SH .

The general pipeline of the proposed algorithm is illustrated in Fig. 3.13.

Figure 3.13: Overview of real welding workstation. The global view camera is facing
towards the robotic arm and work piece.

Now we have a loop of n scans Mi, i = 1, . . . ,n, the graph T1 is aligned with M1 cor-

rectly and we use it as the embedded graph to register M1 to M2. After the registration,

M1,T1 are deformed as M1,2,T1,2 and transformations are denoted as
{(

Rk
1, t

k
1
)}

. Using

the weight and node indices of T2 but the node positions of T1,2, we register M2 to M3 and

get M2,3,T2,3. The process continues until registering Tn back to T1 having transformations{(
Rk

n, tk
n
)}

and we call this process the pairwise registration. For a globally correct regis-

tration, we have Tn,1 = T1, that is for each node, tk
1 + tk

2 + · · ·+ tk
n = 0, and the deformed

mesh Mn,1 is consistent with M1. Given the deformation multiplication property when the

deformation is highly rigid, the total deformation should be an identity and we have the

rotation consistency constraint, Rk
nRk

n−1 · · ·Rk
1 = I.

Due to error accumulation, the pairwise registration will drift to violate such con-

straints. Similar to [122], we distribute the accumulated rotational and translational error

individually and choose a weight wi = 1/Dist(Mi,i+1,Mi+1) to transformations
{(

Rk
i , t

k
i
)}

,

where Dist(Mi,i+1,Mi+1) is the average fitting error of E f it , for all i = 1, . . . ,n. (n+ 1 we
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refer to 1.) Since the error distribution of each node is performed in the same way, we

ignore the superscript k in the following for simplicity.

The translational error is distributed by solving the following optimization,

min
n

∑
i=1

w2
i
∥∥t̂i− ti

∥∥2
, s.t.,

n

∑
i=1

ti = 0, (3.7)

and the solution is found using Lagrange multipliers, t̂i = ti−αi
n
∑
j=1

t j, with the scalar αi

as

αi =
1

w2
i

/
n

∑
j=1

1
w2

j
(3.8)

The rotational error distribution is to minimize the total rotational deviation:

min
n

∑
i=1

wi 6 (R̂i,Ri), s.t.,Rk
nRk

n−1 · · ·Rk
1 = I, (3.9)

where the angle between two rotations is defined as 6 (A,B) = cos−1
(

tr(A−1B)−1
2

)
. Ana-

lyzed in [123], the optimal R̂i is computed as

R̂i = E<αi>
i Ri,

Ei = (RkRk−1 · · ·R1RnRn−1 · · ·Rk+1)
−1,

(3.10)

where αi is referred to equation 3.8, and E<αi>
i is defined to be the rotation matrix that

shares the same axis of rotation as Ei but the angle of rotation has been scaled by αi.

Once all the optimal
{(

R̂k
i , t̂

k
i
)}

are obtained, we use the total transformation{((
R̂k

1 . . . R̂
k
i−1R̂k

i
)−1

,−t̂k
i − t̂k

i−1−·· ·− t̂k
1

)}
to deform the mesh Mi with Ti−1,i back

to M1. After all the meshes Mi are updated, we can repeat the pairwise registration step

from M1 and T1. The graphs T1,T1,2, . . . ,Tn,1 will finally converge to a constant graph and{(
R̂k

i , t̂
k
i
)}

converges to the globally optimal solution.

In the sense that the effect of error distribution step can be considered to prevent the

graph drifting and pull it towards the optimal position, we do not only use high rigidity and
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regularization weights, but also perform an interleaved bi-directional error distribution to

make it more robust to large errors. The basic idea is to perform an inverted iteration using

the order of M1,Mn,Mn−1, . . . ,M3,M2,M1 after a forward directional iteration. The direc-

tional scheme is in essential the same to the multiple cycle blending technique described

in [123] and the total time complexity to convergence is the same because they traverse

both direction in one iteration and we perform each direction once but need two iterations.

To summarize the algorithm:

Algorithm 2 Robust Transformation estimation of rigid objects
1: Scan and reconstruct multiple partial patches of the objects, Mi, i = 1, . . . ,n.
2: Compute the pairwise rigid ICP between partial scans of adjacent view, {Mi,Mi+1|i=

1, . . . ,n−1}, the resulting transformation are denoted as
{(

Rk
1, t

k
1
)}

.
3: Process the pairwise transformation in step 2 by applying bi-directional loop con-

straint (BDL), the optimal
{(

R̂k
i , t̂

k
i
)}

are obtained. Repeat step 2 and step 3, until
the
{(

R̂k
i , t̂

k
i
)}

converges to the globally optimal solution.
4: Once all partial scans Mi, i = 1, . . . ,n are registered to the target scan M1, the final

surface S is extracted by using Screened Poisson Surface method [124].
5: Isolate the surfaces of two rigid object S1 and S2. Run PCA on S1 and S2 respectively.
6: With the 3D coordinates of the predefined marker on the surface of S1 and S2, together

with the main axis calculated in step 5, Z1 and Z2, estimate the frame of S1 and S2, and
then calculate the transformation between these two rigid objects {(R, t)}.

Projector-Eye Calibration

Regarding the calibration of the projector and the local-view camera (SC,SP), it involves

two steps. In the first step we use the auxiliary camera to calibrate the projector-camera

using standard calibration techniques [125]. In the second step, we scan the 3D mockup.

We assume that SC and SP are sharing the same coordinate frame S0 since the camera

and the projector are aiming at two identical objects. From the scanned mockup we can

estimate transformation 0T p. Let 0T c be the homogeneous transformation bridging S0 and

SC. 0T c is the extrinsic parameters of the local view camera. By defining N markers on
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both the work piece and the mock-up, we can get a set of coordinate pairs:

S =
{(

pi, p′i
)∣∣ pi ∈ SP, p′i ∈ SC, i = 1, · · · ,N

}
(3.11)

The extrinsic cT p between SC and SP can then be solved:

E =


E1

...

EN

= 0 (3.12)

where Ei = ‖p′′i−H pi‖2−
∥∥pi−H−1 p′′i

∥∥2 is symmetric transfer error.

Table 3.1: Cameras and projector configuration.

terms 0T c
0T p

cT p
bT c

error 0.632 1.332 2.382
θ = 5.88×10−3◦

t = 0.1mm

Let the coordinate system of the screen be represented as a Cartesian coordinate sys-

tem, {Os,Xs,Ys,Zs}, using unit of pixel. Let the coordinate system of the robotic arm

be represented as a Cartesian coordinate system, {Or,Xr,Yr,Zr}, using unit of mm. The

System defines a certain number (denote as N) of marker points in the screen coordinate

system, P′i (x,y), i = 1, · · · ,N. By pointing the weld gun at corresponding marker point on

the work piece, system can record the coordinate of end effector of robotic arm Pi. we can

get following set of coordinate pairs:

S = {(P′i ,Pi)|i = 1, · · · ,N} (3.13)

In order to calculate the projective matrix M between the two coordinate systems, the

unit should also be unified. Let the pixel density of the screen to be α , then we can get a
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new set of coordinate pairs:

S1 = {(P′′i ,Pi)|i = 1, · · · ,N} (3.14)

where P′′i =
P′i
α
, i = 0, · · · ,N.

We can get these two coordinate systems calibrated by solving the homography in non

linear method:

E =


E1

...

EN

= 0 (3.15)

where Ei = ‖p′′i−H pi‖2−
∥∥pi−H−1 p′′i

∥∥2 is symmetric transfer error.

To summarize, given a pose (based on the feedback from the robotic controller) in SB,

with known bT t ,t T c, our system can estimate the pose of the local view camera, then,

by applying cT p,the visual information captured by the local view camera can be correctly

rendered and projected onto the mock-up. The details of the projection correction algorithm

can found in [57]. We have verified that our reprojection error is less than one millimeter

on the mockup throughout the movement range of the robotic arm.

3.3 Experiment and Usability Evaluation

An initial user study was conducted in order to determine any possible impacts on perfor-

mance due to the VR Pipe display. The selected usability evaluation methods were based

on the premise that our virtualized welding workstation will eventually be used to both di-

rectly control and monitor welding robots. Rather than studying both functions, however,

we chose to focus on the monitoring function of the end user for two reasons. First, existing

research has more frequently focused on direct teleoperation [126, 127] and thus there is a

greater need for a better understanding of the design parameters that enhance monitoring

(supervisory control) tasks. Second, as training of the robots progresses, the monitoring
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role will become a larger and larger portion of the human operators task.

Method

We here define successful monitoring as the operators ability to create and maintain accu-

rate mental models of the weld pool and weld site in order to accurately predict welding

outcomes, thus facilitating timely human intervention when needed. Because monitor-

ing tasks in related domains (e.g., UAV control) are known to become more cognitively

demanding as physical engagement is reduced, we believe cognitive outcomes such as

reduced mental workload, enhanced confidence, and user preference are as critical as ob-

jective performance in predicting long-term success of the system, and for identifying op-

portunities for improvement.

Participants

12 students participated in the current study. 5 of the participants were second-year welding

students (3 male, x̄ age = 36) from a local community and technical college and 1 partic-

ipant was a certified welding educator (male, 43 years age). The remaining 6 participants

were graduate students from a university (2 male, x̄ age = 24). Participants were paid for

their efforts. To assure that there were no significant differences between groups, popula-

tion was included as a fixed factor in all RM-ANOVAs. No main effect of population was

observed for any of the dependent measures F(1,10)> 2.4, p > 0.14.

Stimuli and apparatus

15 welds running parallel across the surface of a steel pipe were created (see Fig. 3.14(a)).

Visual appearances of the welds were altered by manipulating direction, length, amperage,

speed, and end point of the weld. Video of each weld being performed was captured for

use in the three display conditions L, G+L (Fig. 3.15) and HRD (Fig. 3.14(e-l)). To ensure
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that all the welds were visually distinct, 6 sets of 3 welds each were chosen from 9 of the

welds (3 training sets, 3 experimental sets).

Figure 3.14: Visualization of the work piece. (a) global view of the work piece; (b-d) local
view of the work piece; (e-h) blank HRD and HRD of b-d; (i-l) observation of HRD from
different view point; (m-o) global view of the working environment corresponding to b-d.
The frames are cpatured without electric arc for visual purpose.

Figure 3.15: Screen shot of experiment for user study. Left: local view; Right: Global
view; During study, the global view and local view are displayed on screen side by side.
These two views are cropped and image-enhanced for viusal purpose in this paper.

Procedure

Participants were greeted, given a brief over view of the study, and asked to sign informed

consent forms. An overview of the welding apparatus was provided including a simple ex-
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planation of the welding hardware, camera positions and the created welds. This overview

included the factors that were manipulated in order to achieve visual differences between

the different welds. The participants whom were unfamiliar with welding were given a

slightly more in-depth overview if there they were unsure about any of the information.

Participants then performed the matching-to-sample task. First, participants were handed

the metal pipe and asked to inspect a set of three weld samples and specifically informed to

remember differences between them. Participants then watched the weld being performed

on one of the three display types (target weld), and were not allowed to look at the pipe

for reference while the videos were being presented. After the video finished, participants

were instructed to describe which of the three weld samples matched the target weld, and

their confidence in this response on a 1 (low confidence) to 10 (high confidence) scale.

Feedback was provided on the accuracy of their response, and if they were incorrect a sec-

ond opportunity was given. Feedback was again provided on the second attempt. A block

of three trials, one for each display, was used as training prior to the experimental proce-

dure. For the experimental block, each display condition was encountered 3 times for a

total of 9 trials. Display and target weld order were randomized for both the training and

experimental blocks. After each non-training trial of the matching to sample task (i.e. after

a correct responses or 2 incorrect responses), a NASA-RTLX questionnaire was adminis-

tered. Upon completion of all 9 trials, participant completed a time allocation questionnaire

and an open response questionnaire where they reported positive and negative aspects of

each display.

Results

All dependent measures were submitted to a repeated-measures analysis of variance (RM-

ANOVA). If further investigation was warranted, two-tail pairwise comparisons were con-

ducted using the HRD as the reference condition.
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Comparison task performance and confidence

The matching-to-sample comparison task was used to assess the ability of the user to accu-

rately predict the final weld given information provided by the displays. In this regard, the

measure may be considered a test of the users situational awareness afforded by the current

displays [128]. Performance was high across all conditions, with participants on average re-

quiring less than 2 attempts to identify the welds (HRD x̄ = 1.5, L x̄ = 1.47, G+L x̄ = 1.63),

and differences did not achieve significance F(2,22) = 0.905, p > 0.4. However, differ-

ences were observed in participants confidence in their answers after viewing a particular

display F(2,22) = 9.82, p < 0.001, see Figure 3.16(right) for results. On trials where the

HRD was viewed, participants reported higher confidence in their selection (x̄ = 8.25) than

with the Local display (x̄ = 7.833), t(11) = 3.29, p < 0.01, or the Global+Local display

(x̄ = 7.08), t(11) = 2.32, p = 0.04.

Figure 3.16: Left: Mental Demand subscale score from the NASAS-RTLX rating scale.
Mental Demand was rated on a 0 (low) - 100 (high) scale. Error bars are constructed
using 1 standard error from the mean. Right: Graph of reported confidence of the users
in their first response. Confidence rating were reported on a 1 (low confidence) 10 (high
confidence) scale.

Workload analysis:NASA-RTLX

The NASA Raw Task Load Index (NASA-RTLX) version of the NASA-TLX [129] was

administered to assess subjective workload demands between displays. The NASA-RTLX
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is a multidimensional rating scale that consists of 6 separate subscales (i.e. mental de-

mand, physical demand, temporal demand, performance, effort, and frustration). Previ-

ous studies have demonstrated high correlations between the weighted means of the TLX

and unweighted means of the RTLX [130]. All 6 subscales were averaged to create an

overall measure of workload. No significant workload differences were observed between

conditions, F(2,22) = 2.258, p = 0.12. It was hypothesized that the cognitive demands

dimension of the RTLX would be more sensitive to differences in the display, and this

turned out to be correct, F(2,22) = 6.41, p < 0.01. Participants reported greater cognitive

workload requirements (Fig. 3.16(left)) in the Local display condition (x̄ = 42.83) than the

HRD condition (x̄ = 29.30), t(11) = −3.29, p < 0.01. The difference between the HRD

and Global+Local display did not achieve significance, t(11) =−1.61, p = 0.134.

Time allocation

For the time allocation procedure, participants were presented with a hypothetical situation

in which they could choose any of the displays for a similar monitoring task. However, the

displays were located in different areas, and only one display could be viewed at a time.

Participants were given 100 hours of work time to allocate between the three displays.

As the data violate the assumption of independence, a standard RM-ANOVA could not

be conducted. Instead, the data was submitted to a Related-Samples Freidmans Two-Way

ANOVA. Although a significant results were achieved for the total study population, anal-

ysis was conducted selecting only welding students as an assumption was made that they

would be better able to estimate the utility of each individual display in a more traditional

welding environment. See Figure 3.17 for results. A significant effect was found for how

welders would allocate their time across the displays, X2
r (2)= 7.71, p< 0.025. Participants

estimated that they would spend a majority of their time monitoring the HRD (x̄ = 67), a

significantly greater amount than with either the Local display (x̄ = 20), or Global+Local

display (x̄ = 13).
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Figure 3.17: User estimate time allocation between displays for use in a monitoring task.

User study discussion

The HRD demonstrated several advantages in the user study. First, although overall work-

load was consistent across displays, mental workload was significantly decreased when

monitoring with the HRD as opposed to the Local display. We speculate that this may

be due to participants not needing to perform high-demand mental spatial transformations

to account for weld pool travel over the geometry of the pipe. This would also explain

why differences in mental workload did not achieve significance between the HRD and

the Global+Local display, as the Global display mitigates some of the necessary transfor-

mations. Future research may further investigate these claims by increasing the variation

in what differentiates weld types and investigating strengths and weaknesses of the other

displays.

When welding students were asked about how they would opt to allocate their time

between displays in a monitoring task on the job, they chose to allocate a majority of

their time to HRD. While we only have anecdotal evidence to suggest an explanation for

this, many of the welders commented that HRD allowed for monitoring of the weld pool

and the spatial location of the weld, while the global display would be utilized to monitor

the performance of the welding hardware, a task not afforded by HRD or Local display.

Participants allocating some time to the Local display often commented that the higher
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resolution of the display allowed for increased detection of subtle weld pool features. This

opens the future possibility of dual display systems (e.g.HRD + Global display) and a need

for higher fidelity imaging in the HRD.

A question remains as to why the participants did not actually perform better in the

matching-to-sample task with any particular display. The reason for this may lie in the

simplicity of the welds for testing, which allowed students not familiar with the welding

process to perform at a high level regardless of display type. Specifically, all welds fol-

lowed a relatively simple and consistent path across the weld surface, allowing users to

focus on specific differences in determining the target weld (viz. direction and end point).

While the performance measure did not prove sensitive enough to demonstrate a differ-

ence between displays, participants viewing the HRD reported higher confidence in their

responses than with the other display types. This may suggest the HRD allowed for more

robust mental representations of the weld, but further research is necessary. Increasing

the complexity of the weld path, especially though minute lateral deviations, may better

demonstrate the benefit of the HRD.

3.4 Conclusion

In this chapter, we have proposed a novel hybrid reality system for tele-operated weld

monitoring. A high accuracy 3D scanning technique is utilized to create digital models of

work pieces to be welded. Based on the type of welding job, a mock-up is constructed from

a set of templates. The welding process is captured by the camera mounted on the robotic

arm and visualized on the mock-up using projectors. The welder can see the welding

process as if she/he were next to the actual welding. User studies show that our HRD has

reduced the mental workload and is preferred by welders.
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Chapter 4 Teleoperation of Remote Welding

Welding is a widely used manufacturing process that is labor intensive and sometime haz-

ardous. While industrial welding robots have been in use for several decades, they are

pre-programmed actuators with limited, if any, intelligence. As a result welding robots are

primarily used in well-controlled environments, such as assembly lines for mass produc-

tion, in which the work pieces may be accurately prepared and positioned at reasonable

costs. Given that manufacturing is moving towards more customized productions, the next

generation of welding robots that can intelligently adjust to various welding tasks is ur-

gently needed. Unfortunately, equipping robots with intelligence is challenging.

Figure 4.1: Virtualized Welding: Above: an illustration of our virtualized welding opera-
tion, in which existing welding robots are augmented with 3D sensors and video cameras to
capture the working environment. The operator can monitor and control the welding pro-
cess in an augmented display setup in which welding images are projected on a mock-up
3D surface. The operators motion is tracked.

In this chapter we present a prototype of our virtualized welding system (Fig. 4.1),

which is an improved version of our previous prototype that had no robot control [131]. It

is developed using commodity sensing and display components. On the visualization as-

pect, it contains a hybrid-reality display (HRD) system, which utilizes projectors to project

a captured video image onto a 3D replica of the actual weld surface. It provides a direct

50



www.manaraa.com

alignment between the frame of reference for the operator and that of the displayed im-

age [131]. On the human-robot interaction aspect, we developed and tested several inter-

action means, including the use of hand tracking and traditional control with a 3D mouse.

The details of various system components and methods to calibrate and control them are

presented. Results show that our system can provide better control accuracy, in particu-

lar when the welding process is carried on complex surfaces. We contribute is success

to our surrogate-based projection workstation, which provides a natural means to support

navigation and teleoperation tasks.

4.1 System Platform

Similar to the system proposed in 3.1, There are two workstations in our virtualized weld-

ing system (Fig. 3.1): real welding workstation and virtual welding workstation. The real

welding workstation (illustrated in Fig. 4.2) is primarily for conducting the welding task

on the work piece while acquiring visual information of the work piece simultaneously.

It contains the visual information acquisition system and the robot control system. The

virtual welding workstation, is responsible for visualizing the work piece while tracking

tool’s motion. Data communication between there two workstation is linked by network.

Figure 4.2: General structure of the virtualized welding system.
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Real Welding Workstation

Illustrated in Fig. 4.3, The major component of real welding workstation are (1) HD camera

(Point Grey Flea 1394a CCD camera, 1024×768), which is referred to as the local view

camera; (2) robotic arm (Universal Robots UR5 6 axis robot arm, 1/10 mm accuracy).

The real weld gun and a video camera as a group is rigidly mounted to the end effector

of the robotic arm. The local view camera, locally observes the work piece. The view

angle of the camera is adjusted to mimic that of human welders’. Thus a more realistic

visualization experience could be achieved when the visual information taken by the local

view camera is rendered on HRD. The robotic arm follows the command from the virtual

welding workstation and drives the end effector in real time. In addition, a 3D scanner

based on structured light is utilized to scan the work pieces in high resolution ( depth

accuracy is less than 1mm, refer to Fig.4.12).

Figure 4.3: Overview of the real workstation.

Virutal Welding Workstation

A HD projector (DLP, 1920×1080) is used to project image from the real-welding station

onto the mockup. Since the mockup and the actual work pieces have the (almost) iden-

tical surface geometry, or differs only in scale, the resulting HRD is autostereoscipic and

provides the same spatial cue as in the real welding. In order to achieve that, the projector
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must be calibrated with respect to the mockup. This requires the use of an auxiliary camera

(Point Grey Flea3, 1600×1200) to observe the projected images for calibration purpose.

In addition, the projector-camera pair can be used as a 3D scanner. We usually rescan the

mockup to accommodate the errors introduced in 3D printing or assembly. The virtual

welding workstation is illustrated in Fig. 4.4. A 3D mockup of the work pieces is recon-

Figure 4.4: Detailed view of the virtual welding workstation. Major components are a
mock up, a motion sensor, an auxiliary camera and a projector. The mockup is generated
by 3D printer.

structed in the virtual welding station. The mockup can be assembled from identical work

pieces, or in our case, 3D printed. By utilizing the structured light scan technique [116]

with subpixel refinement [119] for reconstructing geometry of 3D objects, this system can

provide a high accuracy point cloud of the mock up. Visualization system can utilize this

accurate measurement of the mock up while rendering video on hybrid reality display.

Since the mock-up has the same 3D geometry as the real work piece and the projector is

calibrated w.r.t the mock-up, the display provides accurate spatial context and 3D cues.

A motion tracking sensor (Leap Motion sensor, 1/100 mm accuracy)is employed to track
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tool’s motion in the virtual welding workstation.

Table 4.1: Cameras and projector configuration.

config Camera(aux) Camera(local) projector
resolution 1600×1200 1024×768 1920×1080

focal length 3697.3 2728.3 2023.8
frame rate 15 FPS 30 FPS 60 FPS

System Workflow

As illustrated in Fig 4.5, the motion sensor in virtual welding workstation monitors possible

motion of the tool of specific shape. Valid motion will trigger a motion command from

motion sensor to robotic arm. Local view camera keeps sending visual information to

virtual workstation for rendering on HRD, and video rendering is self-running. Since the

camera is rigidly mounted on robotic arm, A motion of robotic arm will cause a view

change, which consequentially results a different observation on HRD. User will adjust

their movement based on the observation.

Figure 4.5: System work flow.
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4.2 System Calibration

Extensive calibrations between components of the proposed system are conducted before

the system performs the welding and visualization task. Fig. 4.6 illustrates these calibra-

tions in our system.

Figure 4.6: Calibration of the virtualized welding system. Projector, local view camera,
motion sensor and robotic arm are calibrated together.

In Section 3.2, the calibrations of most elements in the system have been discussed.

Thus, in this section, we only cover the calibration of motion sensor and the TCP frame.

calibration between motion sensor and TCP frame (SL,ST ) can be conducted based

on Eq. 3.13 and Eq. 3.15. Different from (SC,SP) calibration, where the predefined point

can be observed, motion sensor does not detect the 3D coordinate of predefined point on

HRD surface, especially when occlusion presents. Thus a method of triangulation should

be applied in order to get correct corresponding point pair. Denote a marker on surface of

HRD as P in motion sensor coordinate system, and as R in ST . By aiming the weld gun
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toward P at different orientation, we can define two lines as:

p1 = q1 +λ1v1, p2 = q2 +λ2v2 (4.1)

By solving a cost function for triangulation, of line-line intersection.

Φ(p,λ1,λ2) = ‖q1 +λ1 p1− p1‖2−‖q2 +λ2 pv2− p2‖2

w.r.t
∂Φ

∂ p
= (p− p1)+(p− p2) = 0 (4.2)

we can get the 3D coordinate of P in motion sensor space SL. In order to get R in ST ,

robotic arm should be driven so that TCP can touch the marker on surface of work piece.

Now, with given point pair R and P, we can calculate lT t .

4.3 Predictive Control of Robot Speed

In this section a predictive control algorithm is derived. By setting a relatively large robot

speed, tracking performance is guaranteed. However, for large robot speed, the robot is

suffered from large vibration with consistent accelerating and decelerating. Thus, it is pre-

ferred to track the command movement signal (human hand movement speed) with mini-

mum robot speed. In this case, a pre-defined robot speed may not be sufficient for tracking

human hand movement which has inevitably varying speed. In this paper, a systematic way

to determine the robot speed is proposed.

Prediction of the Human Movement

In predictive control [95] a reference signal is needed to compute the control actions. In

our study, the reference signal is the human hand movement. At instant k, the controller

needs to determine the speed u(k) =
√

u2
x(k)+u2

y(k)+u2
z (k)based on the robot tip position

feedback φ(k) = [x(k),y(k),z(k)] to drive the robot to track human hand movement φr(k) =
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[xr(k),yr(k),zr(k)].

The prediction range N should be large enough to achieve a robust control. However,

the regulation speed decreases as N increases. It is found that N = 5 can achieve the

satisfactory regulation speed and good robustness. In our application, the desired trajectory

φr(k+ j) is defined as:

 ui, f (k+ j) = αui, f (k+ j−1)+(1−α)ui(k+ j)

φr(k+ j) = φ(k)+ui, f (k) jTs, j = 1, ...,N
(4.3)

where i = x,y,z, ui, f is the filtered speed in x,y,z axis, Ts is the sampling time, and α

is the smoothing coefficient. As α becomes larger, the system will track the set point with

slower speed but better robustness and smoothness. To choose an appropriate α , prediction

errors are evaluated. Figure 4.8 illustrates 5-step-ahead prediction error in x axis for a

sample human movement specified in Figure 4.7, with respect to smoothing coefficient

from 0 to 1. It is observed that α = 0.9 can achieve a good trade-off between response

speed and robustness, and the 5-step-ahead prediction error reaches its minimum when

α = 0.9.

Figure 4.7: Sample human movement.

Because the smoothness of the human hand movement varies from person to person, it

is evident that different operators should have different smoothing coefficients. To obtain
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Figure 4.8: 5-step-ahead prediction error versus smoothing coefficient.

the smoothing coefficient for a specific operator, a training period can be conducted and

process described in this section can be applied accordingly.

Figure 4.9: 5-step-ahead prediction coordinates.

Figure 4.10: 5-step-ahead prediction errors.

Figure 4.9 and Figure 4.10 depicts the 5-step-ahead prediction performance using Equa-
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tion 4.3. It is observed that the prediction errors remain less than 2 mm for most of the time.

For a relatively long range predictive period (5-step or 2.5 s in this study), this prediction

result is considered acceptable. In the following subsection, this prediction will be utilized

in the predictive control algorithm.

Predictive Control Algorithm

In this section predictive control of robot motion for teleoperation is derived. Given the

sampling time Ts, the following 1-step-ahead prediction equations can be obtained:


x̂(k+1) = x(k)+(ux(k−1)+∆ux(k))Ts

ŷ(k+1) = y(k)+(uy(k−1)+∆uy(k))Ts

ẑ(k+1) = z(k)+(uz(k−1)+∆uz(k))Ts

(4.4)

Suppose the future control action is constant, i.e. ∆ux(k+ j) = ∆uy(k+ j) = ∆uz(k+

j) = 0, j = 1, ...,N, j-step-ahead prediction yields:


x̂(k+ j) = x(k)+(ux(k−1)+∆ux(k)) jTs

ŷ(k+ j) = y(k)+(uy(k−1)+∆uy(k)) jTs

ẑ(k+ j) = z(k)+(uz(k−1)+∆uz(k)) jTs

(4.5)

The prediction equation can be further expressed in matrix form:


[X̂ ]Nx1 = [X(k)]Nx1 +[Fx]Nx1ux(k−1)+ [Fx]Nx3∆ux(k)

[Ŷ ]Nx1 = [Y (k)]Nx1 +[Fy]Nx1uy(k−1)+ [Fy]Nx3∆uy(k)

[Ẑ]Nx1 = [Z(k)]Nx1 +[Fz]Nx1uz(k−1)+ [Fz]Nx3∆uz(k)

(4.6)

where X̂ =

 x̂(k+1)
x̂(k+2)

...
x̂(k+N)

, X(k) =

 x(k)
x(k)

...
x(k)

, Fx =

 Ts 0 0
2Ts 0 0
...

...
...

NTs 0 0

.
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Or

[Φ̂]3Nx1 = [Φ(k)]3Nx1 +[F ]3Nx3[U ]3x1 +[F ]3Nx3[∆U(k)]3x1 (4.7)

where Φ̂ =

(
X̂
Ŷ
Ẑ

)
, Φ(k) =

(
X(k)
Y (k)
Z(k)

)
, U =

(ux(k−1)
uy(k−1)
uz(k−1)

)
, and ∆U(k) =

(
∆ux(k)
∆uy(k)
∆uz(k)

)
.

The predictive control algorithm can be formulated by optimizing a cost function. In

our application the tracking accuracy of the robot arm is important to perform the teleop-

eration. The following cost function is first proposed:

J(∆U(k)) = ∑
N
j=1[(x(k+ j)− xr(k+ j))2 +(y(k+ j)− yr(k+ j))2

+(z(k+ j)− zr(k+ j))2]
(4.8)

Large robot movement speed may generate non-smooth robot movement and shaking,

which is not preferable in our application. Thus, the control objective should minimize the

tracking error as well as the robot speed. The following cost function is used:

J(∆U(k)) = ∑
N
j=1[(x(k+ j)− xr(k+ j))2 +(y(k+ j)− yr(k+ j))2

+(z(k+ j)− zr(k+ j))2]+λ (u2
x(k)+u2

y(k)+u2
z (k))

= [Φ(k)+FU +F∆U(k)−Φr(k)]T [Φ(k)+FU +F∆U(k)−Φr(k)]

+[U +∆U(k)]T Λ[U +∆U(k)]

(4.9)

where [Λ]3x3 = diag(λ ). The value of the weight λ can be determined based on their

physical meaning. For applications where smooth robot movement is more preferable,

λ should be relatively large. While in applications where tracking performance is more

important, smaller should be chosen. In this study λ = 1 (mm/1mm/s)2 is chosen, which

implies that an error of 1mm in the position has the same contribution to the cost function

as robot speed change of 1mm/s.

The control law is calculated such that:

∂J(∆U(k))
∂∆U(k)

= 0 (4.10)
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Equation 4.10 can be further expressed as:

∂J(∆U(k))
∂∆U(k)

=
∂ [U +∆U(k)]T Λ[U +∆U(k)]

∂∆U(k)

+
∂ [Φ(k)+FU +F∆U(k)−Φr(k)]T [Φ(k)+FU +F∆U(k)−Φr(k)]

∂∆U(k)

= 2FT F [Φ(k)+FU−Φr(k)]+2Λ[U +∆U(k)]

= 2(FT F +Λ)∆U(k)+2FT [Φ(k)+FU−Φr(k)] = 0

(4.11)

The predictive control law is finally expressed as:

∆U(k) =−(FT F +Λ)−1[FT (Φ(k)+FU−Φr(k))+ΛU ] (4.12)

The robot movement speed can thus be calculated by

u(k)=
√

(ux(k)+∆ux(k))2 +(uy(k)+∆uy(k))2 +(uz(k)+∆uz(k))2 and sent to the robot

together with the 3D coordinates of the next pose.

Equation 4.12 is an analytical solution to the optimization of the cost function specified

in Equation 4.9, and can thus be implemented in real-time.

4.4 Experiment

In order to demonstrate the performance of our virtualized welding system, we conduct the

following experiments. First, the visualization of work piece on HRD is discussed. Second,

three different control and tracking experiments are conducted: (a) Control robotic arm

with 3D mouse (3DConnexion SpaceMouse Pro 3DX-700040) and visualize video from

local view on flat computer screen; (b) 3D mouse control and visualizing on HRD; (c)

Control robotic arm with motion sensor while rendering video on HRD.
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Visualization on HRD

Each weld path on the work piece is generated by our welding system, with a dimension

of 60 80 millimeters in length and about 5 millimeter in width. By measuring the actual

dimension of each weld path projected on the HRD, a qualitative assessment can be con-

ducted. 15 weld paths (see Fig. 4.11,there are 4 paths on the other side) were tested, and

result can be found in Fig. 4.11(Due to space limit, we only show average result of every 5

paths in a group).

Figure 4.11: weld pathes on the pipe.

The mock up used for HRD is 3D scanned based on real work piece. Our visualization

assumes the mock up is geometrically identical to the real work piece, or with a scale

factor. However, 3D scanner can introduce potential errors. In Fig. 4.12 , we demonstrates

that,when compared with ground truth, the model generated by our 3D scanner has fairly

small error.

Robot Tracking Performance

To assess the performance of the human motion tracking and robot control in our system, 5

human welders is tasked to follow two types of trajectory on the HRD: a straight line, and

a sine wave (Fig. 4.13).
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Figure 4.12: Error of 3D scaned model, the difference between reconstructed model and
ground truth is less than 1 mm.

Figure 4.13: Several patterns for tracking experiment. We designed four different type of
pattern on the surface: straight line, quadratic curve, sine wave and broken line. Note that
when applying these pattern on work piece, all of them turn to 3D curve.

In this subsection, the robot tracking performance is evaluated. It is focus on how

accurate the robotic arm when sending it certain coordinate. Figure 4.14 and Figure 4.15

illustrates the performance of the motion sensor tracking a sine wave in 3D space. Figure

4.16 plots the tracking errors. It is seen that the sent 3D coordinates and measured robot

coordinates are matched well. The tracking errors are maintained smaller than 2 mm, which

is considered acceptable in our application. For tracking a straight line and motion tracked

by 3D mouse, similar tracking performances are observed.
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Figure 4.14: Robot tracking performance of a sine wave using Leap Sensor in 3D space.

Figure 4.15: X-Y plane projection for Figure 4.14.

Comparison Between 3 Algorithms

In this subsection, we compare the reading of motion sensor and the ground truth 3D co-

ordinate. Since the user adjust the motion of the tool based on the video feedback of local

view camera, a good matching proves the overall system accuracy.

The 3 tracking methods are compared and the experiment results are analyzed. Fig. 4.17

describes how these 3 type of experiments are conducted. Figure 4.18 and Figure 4.19

illustrate the tracking performance of a straight line in 3D space. It is shown that the
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Figure 4.16: Tracking errors for Figure 4.14.

tracking performance compared to ground truth is excellent for 3D mouse tracking, either

with 2D screen display or mockup display. For Leap Sensor tracking, the performance is

slightly deteriorated by the human hand movement. However, most of the errors are kept

within 2 mm, which is considered acceptable in our application.

Then a sine wave is tracked by the proposed 3 methods, and the experimental results

are plotted in Figure 4.20 and Figure 4.21. It is shown that compared to 3D mouse tracking,

Leap Sensor can track this complex trajectory with better accuracy.

To quantitatively evaluate the performances of the proposed 3 tracking methods, the

following two criteria are defined. The model average error is;

Eave =
1
n

n

∑
k=1
|ŷ(k)− y(k)|,(k = 1, ...,n) (4.13)

where n is the number of data points, y(k) is the ground truth position at instant k, and

ŷ(k) is the measured robot position. The root mean squares error (RMSE) is calculated by:

RMSE =

√
n

∑
k=1

(ŷ(k)− y(k))2/n (4.14)

Table 4.2 depicts the errors associated with 3 tracking methods. It is seen that for

simple tracking task (e.g., a straight line), tracking with 3D mouse either with 2D screen

or mockup display performs better than Leap Sensor. This is expected because for such
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Figure 4.17: Three different control method. (a): user controls the robotic arm via motion
sensor while viewing the HRD; (b): close up look of a; (c): user controls the robotic arm
via 3D mouse while viewing the flat display device; (d): user controls the robotic arm via
3D mouse whiel viewing the HRD.

Figure 4.18: Tracking performance: straight line.
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Figure 4.19: X-Y plane projection for Figure 4.18.

Figure 4.20: Tracking performance: sine wave.

Figure 4.21: X-Y plane projection for Figure 4.20.
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type of motion, adjusting 3D mouse in one direction is convenient and robust. For Leap

Sensor, however, since human hand motion is intrinsically shaking, the performance might

be deteriorated. Yet, for complex 3D tracking (e.g., sine wave in 3D space), leap sensor

outperform other two tracking methods since the major advantage of the proposed tracking

system is that it has the flexibility like the human hand.

Table 4.2: Error Comparison Between Leap Sensor and 3D Mouse

Line Sine Wave
RMSE Eave RMSE Eave

3D Mouse + Screen 0.7439 0.7458 4.3342 5.4551
3D Mouse + Mockup 0.4798 0.5889 4.0978 4.9812

Leap Sensor 1.1215 1.3266 2.9106 3.4699

Figure 4.22: Tracking performance comparison between different implementation. The
result proves our implementation: 3D motion sensor combined with HRD could handle
more complicated senario, 3D curve in our experiment.

More visualization result for our motion control is shown in Fig. 4.23. Even more

visualization result is in supplementary material.

4.5 Conclusion

In this chapter, we have proposed a novel mixed reality system for tele-operated welding.

A high accuracy 3D scanning technique is utilized to create digital models of work pieces

to be welded. Based on the type of welding job, a mock-up is constructed from a set of
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Figure 4.23: Visualization on HRD during control welding. We use a laser dot in real
welding workstaion to indicate where the weld gun is pointing at. User should use the laser
dot in video feedback rendered on HRD as a spatial and 3D cue. (a,e,i): viewing blank
HRD from different angle; (b-d): welding on straight line; (f-h): welding on curve; (j-l):
welding on sine wave; (m-o): welding on line segments.

templates. The welding process is captured by cameras mount on the robotic arm and

visualized on the mock-up using projectors. The welder can see the welding process as if

she/he were next to the actual welding. Experiment shows that our VR display outperforms

the conventional 2D tele-operated welding.
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Chapter 5 Enhancement of Telepresence

Video has risen to be a dominant force on the Internet. With sufficient computational power

and increasing network bandwidth, a new generation of teleconferencing systems is appear-

ing. Typically marketed as telepresence systems, these devices employ carefully designed

visual and audio environments that address human factors for the participants. By using

large displays, a dedicated network, and high-quality codecs, telepresence systems show

life-size participants with accurate flesh tones and fluid motion, simulating the experience

of face-to-face meetings.

While commercial telepresence systems - such as those from CISCO, Polycom, or

Hewlett-Packard (HP) - offer significant improvement over traditional video teleconfer-

encing systems, one important human factor is still missing: eye contact. As Simmel

remarked [132], eye contact ”represents the most perfect reciprocity in the entire field of

human relationship.” Because eye gaze is vital in the flow of natural communication, the

lack of eye contact is one of the first things participants in video communications notice.

The observation is caused by the fact that the display screen and the video camera cannot

be co-located or co-linear. In a typical teleconferencing setup (shown in Fig. 5.1), the user

often looks at the remote party displayed on the screen, while the local camera often cap-

tures the user from above the screen, creating gaze disparity. To preserve eye contact, the

ideal camera shall be placed behind the screen.

The correction of eye gaze has been studied for decades. Both software solutions and

hardware ones have been introduced. Software methods (e.g., [133–135]) typically use one

more or cameras mounted around the screen to capture the user and then apply image warp-

ing techniques to create a synthesize view from the ideal position (e.g., behind the screen).

This view synthesis problem is very challenging and existing solutions are quite fragile

in practice, therefore none has been commercialized. In the hardware track, various tech-

70



www.manaraa.com

Figure 5.1: Sideview of of a typical teleconferencing system.

niques have been developed to create a see-through screen so that a camera can be placed

behind the screen which at the same time serves the main display area. They range from

the use of half-silver mirror [136], switchable liquid crystal diffusers [137], anisotropic

diffuser [138], to weave fabric [139]. A common problem of these systems is the reduced

image quality due to the additional optical components in the camera’s imaging path. For

example half-silver mirror reduces the amount of incident light by 50%. Therefore the

captured images behind these screens are usually under-exposed, noisy, and of poor color

fidelity.

In this chapter we present a novel image enhancement framework to significantly im-

prove the image quality captured by a camera from a see-through screen. Rather then

performing traditional image enhancement, which are often under constrained, we employ

an additional color+depth camera mounted on the side of the screen to make the problem

better constrained. A novel sensor fusion algorithm is developed to allow the recovery of a

low-noise, high-fidelity image with correct color reproduction and enhanced details.

5.1 Overview

Our desire to put a camera behind a display screen is motivated by the need for main-

taining eye gaze during teleconferencing. However, all current see-through screens will

significantly reduce the amount of light that can be captured by the camera, because of ei-

ther the optical design or the need for fast switching. The resulting image therefore exhibits
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a number of artifacts. The most common ones are high noise level, incorrect color balance,

and lack of details (as if seeing through a fog).

The issue of image or video denosing has been an active research topic for decades.

Effective approaches include as non-local means [99], bilateral filters [100], etc. Unfor-

tunately, high-frequency details are usually lost after denosing, since it is impossible to

distinguish high-frequency contents with random noise in a single image. In order to ad-

dress this, we incorporate an additional image to provide more constraints for denoising.

The use of additional optical component can also alter the color balance of the captured

image. For example, the ConnectBoard system uses an wavelength dependent diffuser

to interleave the projected image and see-through image [101]. The color transfer of the

diffuser is approximated as a piece-wise linear affine transformation. Color transfer from

different images can also be achieved by looking at some image statistics (such as mean

and image histogram) [102]. In this paper rather than explicitly modeling the color transfer

between two devices/images, we directly warp pixels from the reference view to the see-

through view to directly colorize the see-through image.

Our proposed algorithm is related to recent imaging techniques that combine two or

more images in the gradient domain (e.g., [103–105]). These algorithm usually deal with

a stack of images taken from the same perspective, for which the pixel correspondences

across images are accurate and given. In our setup we have two images taken from different

perspectives and (effective) illuminations. Our formulation is designed to be robust against

erroneous and spare correspondences.

5.2 Our Approach

We assume a hybrid setup which includes two cameras. One is mounted around the edge

of the display, which we refer to as the side-view camera. In our current setup we choose to

use the Kinect camera from Microsoft since it can produce a RGB+depth image. The image

from the side view is denoted as Is. The other is mounted behind a screen, which we refer
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to as the eye-view camera. In order to achieve see-through capability we choose to use

the approach that uses a weave fabric for its simplicity and low-cost construction [139].

The image from the eye-view camera is denoted as Ie. Figure 5.2 shows our setup and

Figure 5.3 are one sample pair of images from these two cameras. The task is to use the

information in Is to enhance Ie. Our approach consists of two phases, namely guided image

warping and denoising. We would explain each step in the following sections.

(a) Frontal view (b) Side view

Figure 5.2: Our hybrid setup

Guided Image Warping

The two cameras are pre-calibrated in a common coordinate system. From the calibration

information and the depth map contained in Is, we can back project pixels in Is to find

their corresponding pixels in Ie. This mapping is denoted f : Ie(u,v) = Is(p,q). Note that

f is entirely based on the geometry of the camera and the scene depth map. Due to error

in calibration, changes in visibility, and inaccuracy in the depth map, the mapping can be

erroneous and sparse, that is, some pixels in Ie have the wrong or even no correspondences

in Is. Therefore simply replacing the pixel values at Ie(u,v) with those from Is(p,q) will

yield pool result. We thereby need a better way to enhance Ie.
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(a) Side-view image from 
Kinect camera 

(b) Eye-view image  

Figure 5.3: An example of the side-view image Is, eye-view image Ie. Note the large dif-
ference both in field of view and view angles between Is and Ie, as well as the extreme low
quality of Ie due to under-exposure and noises.

We first check the validity of f by assuming color constancy between the two views.

More specifically, we obtain a Ne×Me patch of pixels around Ie(u,v) and match it within

a slightly larger area of size Ns×Ms, where Ns > Ne and Ms > Me around Is(p,q). To

deal with the difference in camera gain and exposure, we use normalized cross-correlation

(NCC) as the matching metric. If a matching score is above a certain threshold T , the

mapping is updated as Ie(u,v) = Is(p′,q′) where p′,q′ is the coordinate in Is that leads to a

high-enough matching score. For the sake of simplicity in notation, we denote the updated

mapping as f as well in the following sections. Now we can warp the pixels in Is according

to f to the same space as Ie; and the resulting image is denoted as Iw. Note that Iw is sparse

due to pruning process with NCC. Figure 5.4(a)shows the warped image Iw corresponding

to images in Figure 5.3.

In order to obtain a dense image from Iw, we first apply Joint Bilateral Filtering (JBF) [140]

technique using the eye-view image Ie as guidance image. The filtering process can be ex-
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pressed as

IJ
w(p,q) =

1
W (p,q) ∑

(i, j)∈Np,q

Iw(p,q)w(i, j, p,q); (5.1)

where Np,q denotes the neighborhood of pixel Iw(p,q) and

w(i, j, p,q) = e
‖Is(p,q)−Is(i, j)‖2

2σ2r · e
(i−p)2+( j−q)2

2σ2
s , (5.2)

W (p,q) = ∑
(i, j)∈Np,q

w(i, j, p,q)δ (Iw(p,q) 6= 0) (5.3)

where δ (x) is an indicator function, with value being 1 if and only if x holds. The two

parameters σ2
r and σ2

s controls the shape of the range and spatial gaussian kernel respec-

tively and therefore the degree of filtering. Here we have two alternatives that JBF can be

applied to, namely the warped color image Iw and its corresponding sparse depth map. It

is well known that filtering will cause blurry effect. Therefore, directly apply JBF on the

warped color image Iw would result in lost of details. While the depth map after filtering

would also be blurred and accuracy could be compromised, the color image obtained by

back-projecting the depth map to side-view camera space still preserves the details. There

is a trade-off between these two options. We choose to apply JBF on depth map and then

obtain color image by back-projection, instead of filtering the warped color image.

Figure 5.4(b) shows the image obtained after applying the above filtering procedure to

image Iw in Figure 5.5. As we can see, JBF is capable of filling in small holes. However,

due to large view differences between these two cameras, there exist several relatively large

regions in Iw that are not visible in Is, where JBF cannot improve. Since in these regions,

no information exists in the side-view image Is, we can only utilize the eye-view image Ie

as guidance. Obviously simply copy and paste pixel values from Ie to Iw would result in

visible artifacts due to large image differences. We address this problem by solving the
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(a) Warped image  (b) Filtered image using JBF 

Figure 5.4: (a A warped sparse image Iw and (b the image after JBF. Note besides the
large holes in (b that are due to view point variation, there are also some small holes after
filtering. These are mainly due to inaccuracy of filtered depth map.

following Poisson equation [141]:

IP
w = argminI ∑

(i, j)∈H
(∇I(i, j)−v(i, j))2; (5.4)

subject to the boundary conditions

IP
w(p,q) = IJ

w(p,q),∀(p,q) /∈H ; (5.5)

The H above denotes the hole regions in IJ
w, i.e. after applying JBF. ∇I is the gradient field

of image I and v is the gradient field of a guidance image, which could be Ie. However it

is observed that due to the low dynamic range of the eye-view camera in our particular

setup, the gradient field of the original eye-view image Ie does not provide much useful

information. We therefore perform histogram matching on Ie with IJ
w to obtain a contrast

enhanced image IM
e . We then set v = ∇IJ

W and plug it into Eq. 5.4 to solve for image Ip
w.

Figure 5.5 shows the enhanced eye-view image and the hole-filled image by solving the

Poisson equation.

Clearly, the hole-filled image IP
w possesses more high-frequency detail than both the
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(a) Enhanced eye-view image (b) Hole-filled image 

Figure 5.5: (a Enhanced eye-view image through histogram matching; (b Hole-filled image.

original eye-view image Ie and the enhanced image IM
e . Since the image is warped from the

side-view image Is, it does not suffer from the low contrast and color washout issues as in

Ie. However, the hole-filled image IP
w still has large amount of visible noises and requires

denoising, which is explained in the next section.

Denoising

There has been numerous research papers on image and video denoising. In particular,

wavelet-based techniques have been shown to be effective on single image denoising [142–

144]. The general wavelet-based denoising procedure select appropriate threshold limit at

coefficients at each scale to best remove the noises in image, and then perform inverse

wavelet transform of the processed wavelet coefficients to get denoised image. Here we

employ Bayes Least-Squares using Gaussian Scale Mixtures (BLS GSM) algorithm [142]

to remove noise from the image IP
w . Instead of using threshold on coefficients, BLS GSM

removes noise based on a statistical model of the coefficients of an over-complete multi-

scale oriented basis.

This technique models the wavelet coefficients, denoted as y, within a local patch in
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(a) (b) (c)

Figure 5.6: Detected face region and skin colo region, which is used for noise variance
estimation.

each scale for an observed image as a Gaussian Scale Mixtures (GSM), as in Eq. 5.6

y = x+w =
√

zu+w (5.6)

where z (scale), u (underlying signal) and w (noise) are all zero-mean Gaussians. One as-

sumption made in [142] about the noise behavior is knowledge of noise variance, denoted

as σ2. In real case, the assumption usually does not hold, though pre-calibration can be

conducted to estimate the noise variance and use it as an approximation afterwards. How-

ever, noise behavior, and thereby the noise variance σ2, might vary under different lighting

conditions and changes of other environmental factors. Due to our specific application,

namely video teleconferencing, we can assume existence of human faces in the image.

Therefore, we propose to estimate the noise variance σ2 from face regions in the image.

The basic idea is to perform face detection [145] and then skin color detection [146] on

the face region to select a set of candidate pixels, which we denote as S . In figure 5.6 we

show an example of detected face and skin color region on the face.

The underlying assumption of our approach is uniformity of skin color in human face,

which is valid in most cases. Nonetheless, observed skin color in images are not necessarily

uniform because of light conditions. Therefore, we use a local method to estimate the noise

variance σ2. A set of noises in small local neighborhood of the pixels in S are estimated
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Eye-view image 
Side-view 

image 
(RGB+Depth) 
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Joint Bilateral 
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Filtered Image 
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Hole-filled 
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Wavelet-based 
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Result 

Figure 5.7: Out processing pipeline. The green blocks are our inputs and the red block is
our output; while all the rest are our intermediate processing modules

by subtracting local mean:

Φ(i, j) =
{
|IP

w(p,q)− 1
|Ni, j| ∑

(k,l)∈Ni, j

IP
w(k, l)|;

∀(p,q) ∈Ni, j
}
,∀(i, j) ∈S ;

(5.7)

Then variance of all these noises are calculated and treated estimation of global noise

variance.

σ
2 =Var

{ ⋃
(i, j)∈S

Φ(i, j)
}

; (5.8)

where Var{X } means the variance of all the elements in the set X . We then plug in the

estimated σ2 into the BLS GSM algorithm for noise reduction. After this step, the final

image can be ready for display. The results are shown in section 5.3. Out entire pipeline is

summed up in Fig. 5.7.

5.3 Experiments

In this section we first demonstrate the advantages of employing each components in our

approach and then qualitatively evaluate the performance of our approach. While the ef-

fectiveness of JBF and Poisson Blending has been shown in Sec. 5.2, here we show that the

noise variance estimation presented in Sec. 5.2 offers more robustness to lighting changes.

We use a uniform color board to pre-calculate the noise variance under two lighting condi-
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tions, one similar to the one under which we capture the real scene while another is fairly

different. Figure 5.8 shows the comparisons. In the case where lighting conditions are

similar, pre-calibration is almost equivalent to our skin-color-based estimation, as show in

the left and right column. However, with lighting changed, the pre-calibrated noise behav-

ior is usually not consistent with the real scene; and therefore denoising would result in

over-smoothed or under-smoothed. Here in the right column of Figure 5.8, we show a case

of over-smoothed.

In the third column of Figure 5.9, we show results applying our approach to several

real scenes. Compared to the original eye-view images in second column, our approach

achieves significantly higher image qualities, both in terms of high-frequency details and

level of noises. For the sake of comparing overall performance, we also apply bilateral

filters [1] and wavelet domain filters [2] with histogram matching on the same set of eye-

view images. We keep the parameters for both comparison methods fixed for all these

(a) Source image from which noise variance are estimated. Left: real scene image. 
Middle: with lighting similar to real scene. Right: with lighting different to real scene. 

(b) Denoising results with the noise variances estimated from the images in (a), from 
left to right respectively. 

Figure 5.8: Comparison of noise variance estimations.
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Figure 5.9: Comparison of our result (third column) with bilateral filtering [1](fourth col-
umn) and wavelet domain denoising [2] (fifth column). The first and second columns are
images from side-view camera, i.e. Kinect, and eye-view camera, respectively.

experiments. For bilateral filters, we use 5× 5 neighborhood and [3,0.1] as spatial and

range kernel variance; while the noise variance σ2 for wavelet-based methods is the one

estimated from the image in the middle column in Figure 5.8. Figure 5.9 shows results of

four real cases, with both our results and the others’ for comparison. It is clear that our

approach preserves more details. By contrast, both bilateral filter and wavelet filters suffer

from more severe lost of details.

There are still rooms for improvement in our results. Some of the occluded areas are

overly smoothed. Two sources of errors could contribute to these artifacts: misalignment

due to inaccuracy of depth map and imperfect inlier selection with NCC. With such small

errors, Poisson Blending would propagate the error to some extent. However, since we

only apply Poisson Blending on the hole regions due to view-point difference while other

small holes are filled using JBF, the artifacts are limited to those small regions.
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5.4 Conclusion

In this chapter we present a novel image enhancement method to effectively improve the

frame visual quality captured by camera behind a see-through screen. Our framework dif-

fers from present image enhancement by adding additional color and depth information

captured by Kinect camera. This unique setup makes our algorithm outperform traditional

image enhancement method in recovering nature colored image with less noise and more

detail information. We develop a novel pipeline that adopt state-of-the-art image warp-

ing, filtering, and fusing techniques to enhance the underexposed and blurry see-through

image. By comparing our approach with bilateral filter and typical denoising algorithm,

we demonstrate our algorithms ability of better preserving detail image information while

reducing noise. Looking into the future we plan to use graphics hardware to make the

processing in real time. Since almost all of our operations are local, they can be easily

accelerated on the GPU. In addition we want to explore ways to directly estimate an image

noise model without explicitly correspondences so we can use a regular side-view camera.

This might be possible if the baseline between these two camera is small.
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Chapter 6 Conclusion and Future Work

In this dissertation, we have explored several aspects in the area of telerobotics. In the

tele-operation, we present novel ways by using mixed reality techniques. The proposed

algorithms benefit the multi-sensor calibration which is critical to tele-operation. Based on

the proposed algorithms, we further developed a platform for monitoring, visualization and

remote control of a teleoperational system. We apply our techniques in application such as

remote welding and the promising result proves the performance of our algorithms. In the

tele-presence, present a novel image enhancement method to effectively improve the frame

visual quality captured by camera behind a see-through screen. By comparing our approach

with bilateral filter and typical denoising algorithm, we demonstrate our algorithms ability

of better preserving detail image information while reducing noise.

6.1 Contribution

Teleoperation with proper visual information assistant is still a challenging problem. Due

to wide range of human factors, ergonomics, and usability research that has identified the

limitations of traditional planar displays for supporting navigation and teleoperation tasks,

I proposed a new type of display: hybrid-reality display (HRD) system [147], which uti-

lizes commodity projection device to project captured video frame onto 3D replica of the

actual target surface. It provides a direct alignment between the frame of reference for the

human subject and that of the displayed image. The advantage of this approach lies in the

fact that no wearing device needed for the users, providing minimal intrusiveness and ac-

commodating users eyes during focusing. The field-of-view is also significantly increased.

From a user-centered design standpoint, the HRD is motivated by teleoperation accidents,

incidents, and user research in military reconnaissance etc. Teleoperation in these environ-

ments is compromised by the Keyhole Effect, which results from the limited field of view
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of reference. The followed up research of HRD is focused on high accuracy 3D reconstruc-

tion of the replica via commodity devices for better alignment of video frame. There are

three conventional approaches: Time of Flight (TOF) sensor based, Kinect Fusion Based,

and structured light scanning based method. The first two methods suffer from relatively

low depth resolution due to the limitation of the depth sensor. The third one can provide

sub-millimeter accuracy while sensitive to spectrum nature of object. In [148], I improved

the performance of structured light scanning by utilizing a high speed near infrared projec-

tor, which is robust to the color of object.

Robot control has been an active research area since early 1980s. Different control

methods have been proposed, ranging from passivity, compliance, predictive and adaptive

control, and variable structures. Predictive control of linear systems has received consid-

erable attention in past decades due to its robustness with respect to model uncertainty. In

[149], I proposed 1-step-ahead predictive control algorithm. The latency between human

control and robot movement can be formulated as a linear equation group with a smooth

coefficient ranging from 0 to 1. This predictive control algorithm can be further formulated

by optimizing a cost function. Another aspect of research regarding to improve the perfor-

mance of robot control relies on high accuracy inter-devices calibration, which is also a hot

topic in robotic vision. I mainly focused on calibration between auxiliary device (mounted

camera, etc.) and robot. In [150], I addressed a rigid/non-rigid model completion based

on iterative closest point (ICP) and global optimization of error distribution. This method

adapts the fact that the alignment error introduced during bounding of each pair of adjacent

patches of 3D scan is inevitable. With global optimization, the generated complete model

suffers from fewer artifacts.

In the scope of tele-presence, all current see-through screens will significantly reduce

the amount of light that can be captured by the camera, because of either the optical design

or the need for fast switching. The resulting image therefore exhibits a number of artifacts.

The most common ones are high noise level, incorrect color balance, and lack of details
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(as if seeing through a fog). In this paper rather than explicitly modeling the color transfer

between two devices/images, we directly warp pixels from the reference view to the see-

through view to directly colorize the see-through image. Our proposed algorithm is related

to recent imaging techniques that combine two or more images in the gradient domain.

These algorithm usually deal with a stack of images taken from the same perspective,

for which the pixel correspondences across images are accurate and given. In our setup

we have two images taken from different perspectives and (effective) illuminations. Our

formulation is designed to be robust against erroneous and spare correspondences

6.2 Future Work

Shard the point with science fiction masterwork, the ultimate goal of robot is highly intelli-

gent, independent device with the merit of robustness and accuracy. The potential research

areas which also interested me are 1) automation: parameterize the rich set of human con-

trol data via data-driven approach. The ultimate goal is to enable the development of future

generation of multi-task robot that can sense and adapt to different jobs with little or no

human intervention. 2) Robust sensing: sensor is the main environment information inter-

face of robot. The accuracy and robustness of sensor and related algorithm greatly affect

the performance of task driven robot. The perception of the scene in three dimensions,

especially with existence of object with specular highlight is still an open question. Thus,

my next research topic is real-time reconstruction of 3D model of object with specular

highlight.

In the scope of tele-presence, looking into the future we plan to use graphics hardware

to make the processing in real time. Since almost all of our operations are local, they can be

easily accelerated on the GPU. In addition we want to explore ways to directly estimate an

image noise model without explicitly correspondences so we can use a regular side-view

camera. This might be possible if the baseline between these two camera is small.
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Chapter 7 Appendix

Due to the complexity of the experiment environment setup, this chapter statements the

general procedure of system calibration for the remote welding in Chapter 3 and Chapter 4.

7.1 Camera Calibration

In our experiment, there are two video cameras involved. One is mounted on the robotic

arm (denoted as Cama) and another is the auxiliary camera paired with the projector in

virtual workstation (denoted as Camb).

Camera Calibration of Cama

Due to the nature of welding process, the distance between the tool holding by the robotic

arm and the work piece should be less than 5 mm. Consequently, the Cama, in order to gain

relatively high resolution of region of interest (ROI) while keep the FOV for environment

awareness, should be mounted with a wide FOV lens while keep the camera as close as

to the work piece. The wide FOV lens, inevitably, could introduce barrel shape optical

distortion. An matured solution for undistortion is by using the Matlab based camera self-

calibration toolbox [125]. Once the parameter of distortion is calculated by the toolbox,

there are plenty of real-time image undistortion toolboxes available. The experiment data

can be viewed in Fig. 7.1.

Camera Calibration of Camb

The calibration of the auxiliary camera Camb is essentially following the calibration of

structured light scanner, which is a joint calibration of camera and the paired projector.

The procedure can be refereed to [116].
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Figure 7.1: Camera undistortion. a)-d) sample input images for undistortion toolbox; e)
camera view before undistortion; f) camera view after undistortion.

7.2 Motion Sensor Calibration

The motion sensor applied in our experiment setup is primarily for hand detection and hand

motion tracking. Consequently, only the 3D coordinate of tip of bar-shaped object and its

3D orientation can be extracted from the sensor’s IO interface. In order to calibrate the

motion sensor with the mock up, the conventional method failed since the sensor itself is

not a fully functional 3D scanner. Inspired by the concept of triangulation, we introduced

a unique way to fulfill the requirement of calibration. The concept is illustrated in Fig. 7.2.

Step1. randomly assign and mark a few dots on the surface of the mock up.

Step2. record the 3D coordinate of the tip location and 3D pose of the bar when it

is pointing at certain marker from at least 3 different directions. Based on triangulation,

calculate the 3D coordinate of the marker in the coordinate system of motion sensor.

Step3. Based on the 3D coordinate of the markers, employ RANSAC to assist the

calculation of the transform matrix between the coordinate systems defined on the mock

up and the motion sensor.
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Figure 7.2: Conept of motion sensor calibration. Left, coordinate system defined on motion
sensor and mock up; Right, procedure of triangulation.

7.3 Work piece-projector Calibration

Finally, the work piece and projector should be calibrated such that the video feedback from

the Cama could be properly rendered and projected onto the surface of the corresponding

mock up. Based on the motion trajectory of the tool holding by the robotic arm and the

actual effective rendering area of the mock up, we can pre-define several control point on

the work piece. By pointing the tool towards the control points, several images of the

surface of work piece with chessboard pattern will be captured via the Cama. Based on

the calibration in Section 3.2, the 3D model of the mock up with texture in the coordinate

system of projector can be calculated. The lookup table based calibration can therefore

be processed. Each image (2D) can be registered with certain portion of the textured 3D

model (3D) via 2D to 3D projection. The missing data between adjacent control point will

be interpolated. The concept is illustrated in Fig. 7.3.
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Figure 7.3: Conept of lookup table based calibration. At each control point, a 2D-3D pro-
jection is calculated based on cooresponding feature points. The interpolation is introduced
between adjacent control points.
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